Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Ngọc Mai Anh
Xem chi tiết
Phùng Minh Quân
28 tháng 1 2019 lúc 11:04

\(P=\frac{1}{25a}+\frac{1}{16b}+\frac{1}{9c}=\frac{\frac{1}{25}}{a}+\frac{\frac{1}{16}}{b}+\frac{\frac{1}{9}}{c}\ge\frac{\left(\frac{1}{5}+\frac{1}{4}+\frac{1}{3}\right)^2}{a+b+c}=\frac{2209}{3600}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\frac{\frac{1}{5}}{a}=\frac{\frac{1}{4}}{b}=\frac{\frac{1}{3}}{c}=\frac{\frac{1}{5}+\frac{1}{4}+\frac{1}{3}}{a+b+c}=\frac{47}{60}\)

\(\Rightarrow\)\(\hept{\begin{cases}a=\frac{1}{5}:\frac{47}{60}=\frac{12}{47}\\b=\frac{1}{4}:\frac{47}{60}=\frac{15}{47}\\c=\frac{1}{3}:\frac{47}{60}=\frac{20}{47}\end{cases}}\)

... 

Phùng Minh Quân làm đúng đó !

k bạn ý đi !!!

tạ Văn Khánh
Xem chi tiết
Nguyễn Huy Tú
15 tháng 10 2016 lúc 15:30

Giải:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=b.k,c=d.k\)

a) Ta có: \(\frac{a}{b-a}=\frac{b.k}{b-b.k}=\frac{b.k}{b\left(1-k\right)}=\frac{k}{1-k}\) (1)

\(\frac{c}{d-c}=\frac{d.k}{d-d.k}=\frac{d.k}{d\left(1-k\right)}=\frac{k}{1-k}\) (2) 

Từ (1) và (2) \(\Rightarrow\) \(\frac{a}{b-a}=\frac{c}{d-c}\)

Vậy \(\frac{a}{b-a}=\frac{c}{d-c}\)

b) Ta có: \(\frac{9a-7b}{9a+7b}=\frac{9.b.k-7.b}{9.b.k+7.b}=\frac{b.\left(9.k-7\right)}{b\left(9.k+7\right)}=\frac{9.k-7}{9.k+7}\) (1)

\(\frac{9c-7d}{9c+7d}=\frac{9.d.k-7.d}{9.d.k+7.d}=\frac{d.\left(9.k-7\right)}{d.\left(9.k+7\right)}=\frac{9.k-7}{9.k+7}\) (2)

Từ (1) và (2) \(\Rightarrow\frac{9a-7b}{9a+7b}=\frac{9c-7d}{9c+7d}\)

Vậy \(\frac{9a-7b}{9a+7b}=\frac{9c-7d}{9c+7d}\)

c) Ta có: \(\left(\frac{a+b}{c+d}\right)^3=\left(\frac{b.k+b}{d.k+d}\right)^3=\left[\frac{b.\left(k+1\right)}{d.\left(k+1\right)}\right]^3=\left(\frac{b}{d}\right)^3\) (1)

\(\frac{a^3+b^3}{c^3+d^3}=\frac{\left(b.k\right)^3+b^3}{\left(d.k\right)^3+d^3}=\frac{b^3.k^3+b^3}{d^3.k^3+d^3}=\frac{b^3.\left(k^3+1\right)}{d^3.\left(k^3+1\right)}=\frac{b^3}{d^3}=\left(\frac{b}{d}\right)^3\) (2)

Từ (1) và (2) \(\Rightarrow\left(\frac{a+b}{c+d}\right)^3=\frac{a^3+b^3}{c^3+d^3}\)

Vậy \(\left(\frac{a+b}{c+d}\right)^3=\frac{a^3+b^3}{c^3+d^3}\)

Mai Thị Loan
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 7 2020 lúc 10:33

\(VT=\frac{a}{1+9b^2}+\frac{b}{1+9c^2}+\frac{c}{1+9a^2}\)

\(VT=a-\frac{9ab^2}{1+9b^2}+b-\frac{9bc^2}{1+9c^2}+c-\frac{9ca^2}{1+9a^2}\)

\(VT\ge a+b+c-\left(\frac{9ab^2}{6b}+\frac{9bc^2}{6c}+\frac{9ca^2}{6a}\right)\)

\(VT\ge1-\frac{3}{2}\left(ab+bc+ca\right)\)

\(VT\ge1-\frac{1}{2}\left(a+b+c\right)^2=\frac{1}{2}\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)

Phạm Kim Oanh
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 11 2021 lúc 17:28

\(P\le\sqrt{3\left(9a+16b+9b+16c+9c+16a\right)}=\sqrt{75\left(a+b+c\right)}=15\)

\(P_{max}=15\) khi \(a=b=c=1\)

Agent P
Xem chi tiết
Dương
Xem chi tiết
Kiệt Nguyễn
2 tháng 2 2021 lúc 11:05

Áp dụng bất đẳng thức Cô-si, ta có: \(\frac{a}{1+9b^2}+\frac{b}{1+9c^2}+\frac{c}{1+9a^2}=\left(a-\frac{9ab^2}{1+9b^2}\right)+\left(b-\frac{9bc^2}{1+9c^2}\right)+\left(c-\frac{9ca^2}{1+9a^2}\right)\)\(\ge\left(a-\frac{9ab^2}{6b}\right)+\left(b-\frac{9bc^2}{6c}\right)+\left(c-\frac{9ca^2}{6a}\right)=\left(a+b+c\right)-\frac{3\left(ab+bc+ca\right)}{2}\)\(\ge\left(a+b+c\right)-\frac{\left(a+b+c\right)^2}{2}=\frac{1}{2}\)

Đẳng thức xảy ra khi a = b = c = 1/3

Khách vãng lai đã xóa
Dra Hawk
Xem chi tiết
Nguyễn Thiều Công Thành
Xem chi tiết
Thắng Nguyễn
13 tháng 12 2016 lúc 11:49

Ngoài http://olm.vn/hoi-dap/question/779981.html còn cách khác

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left(9a^3+3a^2+c\right)\left(\frac{1}{9a}+\frac{1}{3}+c\right)\ge\left(a+b+c\right)^2\)

\(\Rightarrow A\le\text{∑}\frac{a\left(\frac{1}{9a}+\frac{1}{3}+c\right)}{\left(a+b+c\right)^2}=\text{∑}\left(\frac{1}{9}+\frac{a}{3}+ac\right)\)

\(=\frac{1}{3}+\frac{a+b+c}{3}+\text{∑}ab\le\frac{1}{3}+\frac{1}{3}+\frac{\left(a+b+c\right)^2}{3}=1\)

Dấu "=" khi \(a=b=c=\frac{1}{3}\)

alibaba nguyễn
13 tháng 12 2016 lúc 9:52

a.b.c=1 thật hả. Rắc rối thế. Để nghĩ tiếp

Sống cho đời lạc quan
13 tháng 12 2016 lúc 10:22

không biết

saadaa
Xem chi tiết
Mr Lazy
28 tháng 8 2016 lúc 7:58

\(\frac{a}{9b^2+1}=\frac{a\left(9b^2+1\right)-9ab^2}{9b^2+1}=a-\frac{9ab^2}{9b^2+1}\ge a-\frac{9ab^2}{2\sqrt{9b^2.1}}=\)

\(=a-\frac{9ab^2}{6b}=a-\frac{3ab}{2}\)

Tương tự với các biểu thức còn lại, kết hợp với 

\(ab+bc+ca\le\frac{1}{3}\left(a+b+c\right)^2\)

là được đáp án.