\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{9a}{9c}=\frac{16b}{16d}=\frac{9a-16b}{9c-16d}=\frac{9a+16b}{9c+16d}\Rightarrow\frac{9a-16b}{9a+16b}=\frac{9c-16d}{9c+16d}\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{9a}{9c}=\frac{16b}{16d}=\frac{9a-16b}{9c-16d}=\frac{9a+16b}{9c+16d}\Rightarrow\frac{9a-16b}{9a+16b}=\frac{9c-16d}{9c+16d}\)
cm rằng từ tỉ lệ thức a/b =c/d ta có tỉ lệ thức sau \(\frac{4a^2-3ab}{9a^2+7b^2}=\frac{4c^2-3cd}{9c^2+7d^2}\)
Chứng minh rằng từ \(\frac{a}{b}\)=\(\frac{c}{d}\)ta có tỉ lệ thức sau:
\(\frac{4a^2-3ab}{9a^2+7b^2}=\frac{4c^2-3cd}{9c^2+7d^2}\)
chi a,,b,c thoa man (a+2b)(2b+3c)(3c+a)khac 0 va
\(\frac{a^2}{a+2b}+\frac{4b^2}{2b+3c}+\frac{9c^2}{3c+a}=\frac{a^2}{2b+3c}+\frac{4b^2}{a+3c}+\frac{9c^2}{a+2b}\)
cmr;\(\frac{a}{6}=\frac{b}{3}=\frac{c}{2}\)
Cho \(\frac{a}{b}\)= \(\frac{b}{3c}\)=\(\frac{c}{9a}\). CMR : b = c
Cho a,b,c >0 và \(\frac{b-20a+16c}{4a}=\frac{c-20b+16a}{4b}=\frac{a-20c+16b}{4c}\)
Tính giá trị \(F=\left(4+\frac{a}{4b}\right).\left(4+\frac{b}{4c}\right).\left(4+\frac{c}{4a}\right)\)
CMR: từ a/b=c/d ta có tỉ lệ thức sau
4a^2-3ab/9a^2+7b^2 = 4c^2-3cd/9c^2+7d^2
giúp mình giải bài tập nha! mình sẽ tick cho!
bài 2:
a, cho \(\frac{a}{b}=\frac{b}{3c}=\frac{c}{9a}.CMR:b=c\)
b, CMR: \(\frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+\frac{1}{4.6}+......+\frac{1}{2013.2015}+\frac{1}{2014.2016}< \frac{3}{4}\)
Cho \(\frac{a}{b}=\frac{c}{d}\) . CMR:
a) \(\frac{a}{b}=\frac{11a+9c}{11b+9d}\) ; b) \(\frac{3a^2+5c^2}{3b^2+5d^2}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\)
1. Cho tam giác ABC vuông tại A. I là giao điểm của các đường phân giác trong tam giác ABC. CMR:
\(CI^2=\frac{\left(BC-AB\right)^2+AC^2}{2}\)
2. Cho \(\frac{a}{b}=\frac{b}{3c}=\frac{c}{9a}\). CMR: b = c