Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn thùy linh
Xem chi tiết
Thắng Nguyễn
17 tháng 2 2017 lúc 23:01

đề đúng ko v

nguyễn thùy linh
17 tháng 2 2017 lúc 23:10

đúng đó bạn ạ

nguyễn thùy linh
17 tháng 2 2017 lúc 23:12

úi lộn k phải 3mà là 3x^2

nguyễn thùy linh
Xem chi tiết
༄NguyễnTrungNghĩa༄༂
Xem chi tiết
Con Chim 7 Màu
25 tháng 5 2019 lúc 15:00

Áp dụng BĐT Cauchy=Schwarz ta có:

\(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\Rightarrow x+y+z\le\sqrt{3}\)

Ta lại có:\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\forall x,y,z\)

\(\Leftrightarrow2\left(x^2+y^2+z^2\right)-2\left(xy+yz+zx\right)\ge0\)

\(\Leftrightarrow x^2+y^2+z^2\ge xy+yz+zx\)

\(\Rightarrow A\le\sqrt{3}+1\)

Dấu '=' xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\)

tth_new
29 tháng 5 2019 lúc 7:58

Em làm lại,cách này mà còn sai nữa thì em xin hàng ạ! Dù sao đi nữa cũng xin mọi người chịu khó góp ý giúp em để em càng ngày càng tiến bộ hơn nữa ạ! Thanks all !

*Tìm min

Đặt p = x + y + z; q = xy + yz + zx thì \(x^2+y^2+z^2=p^2-2q=1\Rightarrow q=\frac{p^2-1}{2}\)

Suy ra \(A=p+q=p+\frac{p^2-1}{2}=\frac{p^2+2p-1}{2}\)

\(=\frac{p^2+2p+1-2}{2}=\frac{\left(p+1\right)^2-2}{2}\ge-\frac{2}{2}=-1\)

Vậy giá trị nhỏ nhất của A là -1.

Dấu "=" xảy ra khi (x;y;z) = (0;0;-1) (chỗ này em không biết giải rõ thế nào nữa :v)

*Tìm max

Ta có BĐT sau: \(xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}\le x^2+y^2+z^2\)

Suy ra \(q\le\frac{p^2}{3}\le p^2-2q=1\) suy ra \(\hept{\begin{cases}q\le p^2-2q=1\\p^2\le3\left(p^2-2q\right)\end{cases}}\Leftrightarrow\hept{\begin{cases}q\le1\\p\le\sqrt{3\left(p^2-2q\right)}=\sqrt{3}\end{cases}}\)

Suy ra \(A=p+q\le\sqrt{3}+1\)

Thanh Tùng DZ
25 tháng 5 2019 lúc 14:58

Ta có : 

\(x^2+y^2\ge2\sqrt{x^2y^2}=2xy\)\(y^2+z^2\ge2\sqrt{y^2z^2}=2yz\)\(x^2+z^2\ge2\sqrt{x^2z^2}=2xz\)

\(\Rightarrow2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)\)\(\Rightarrow x^2+y^2+z^2\ge xy+yz+xz\)

hay \(xy+yz+xz\le1\)

Mặt khác : \(x^2+1\ge2x;y^2+1\ge2y;z^2+1\ge2z\)nên \(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)

hay \(2\left(x+y+z\right)\le4\)\(\Rightarrow x+y+z\le2\)

\(\Rightarrow A=x+y+z+xy+yz+xz\le2+1=3\)

hình như làm thế này sai thì phải

nguyễn thùy linh
Xem chi tiết
alibaba nguyễn
19 tháng 2 2017 lúc 17:26

Ta có:

\(\left(x-y\right)^2+\left(x-z\right)^2\ge0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(x-z\right)^2+\left(x+y+z\right)^2\ge\left(x+y+z\right)^2\)

\(\Leftrightarrow x^2-2xy+y^2+x^2-2xz+z^2+x^2+y^2+z^2+2\left(xy+yz+xz\right)\ge A^2\)

\(\Leftrightarrow A^2\le2\left(y^2+yz+z^2\right)+3x^2=36\)

\(\Leftrightarrow-6\le A\le6\) 

Thắng Nguyễn
18 tháng 2 2017 lúc 23:29

min=-6 khi x=y=z=-2

max=6 khi x=y=z=2

gl !!

nguyễn thùy linh
19 tháng 2 2017 lúc 11:10

giải thế nào vậy ban

Quang Đẹp Trai
Xem chi tiết
Lionel Messi
Xem chi tiết
Cù Đức Anh
4 tháng 12 2021 lúc 22:33

sai đề

Nguyễn Việt Lâm
4 tháng 12 2021 lúc 23:04

Theo nguyên lý Dirichlet, trong 3 số x;y;z luôn có 2 số cùng phía so với \(\dfrac{1}{2}\)

Không mất tính tổng quát, giả sử đó là y và z 

\(\Rightarrow\left(y-\dfrac{1}{2}\right)\left(z-\dfrac{1}{2}\right)\ge0\Leftrightarrow yz-\dfrac{1}{2}\left(y+z\right)+\dfrac{1}{4}\ge0\)

\(\Leftrightarrow y+z-yz\le\dfrac{1}{2}+yz\)

Mặt khác từ giả thiết:

\(1-x^2=y^2+z^2+2xyz\ge2yz+2xyz\)

\(\Leftrightarrow\left(1-x\right)\left(1+x\right)\ge2yz\left(1+x\right)\)

\(\Leftrightarrow1-x\ge2yz\)

\(\Rightarrow yz\le\dfrac{1-x}{2}\)

Do đó:

\(A=yz+x\left(y+z-yz\right)\le yz+x\left(\dfrac{1}{2}+yz\right)=\dfrac{1}{2}x+yz\left(x+1\right)\le\dfrac{1}{2}x+\left(\dfrac{1-x}{2}\right)\left(x+1\right)\)

\(\Rightarrow A\le-\dfrac{1}{2}x^2+\dfrac{1}{2}x+\dfrac{1}{2}=-\dfrac{1}{2}\left(x-\dfrac{1}{2}\right)^2+\dfrac{5}{8}\le\dfrac{5}{8}\)

\(A_{max}=\dfrac{5}{8}\) khi \(\left(x;y;z\right)=\left(\dfrac{1}{2};\dfrac{1}{2};\dfrac{1}{2}\right)\)

phan tuấn anh
Xem chi tiết
Hoàng Lê Bảo Ngọc
20 tháng 10 2016 lúc 5:28

\(\frac{3}{2}x^2+y^2+z^2+yz=1\Leftrightarrow3x^2+2y^2+2z^2+2yz=2\)

\(\Leftrightarrow\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2+\left(y+z\right)^2=2\)

\(\Rightarrow\left(x+y+z\right)^2\le2\)

\(\Rightarrow-\sqrt{2}\le x+y+z\le\sqrt{2}\)

Từ đó tìm được MAX

phan tuấn anh
20 tháng 10 2016 lúc 20:40

thank nha ngọc

Trương Nguyễn Tú Anh
Xem chi tiết
Mai Tiến Đỗ
Xem chi tiết
Trần Minh Hoàng
23 tháng 1 2021 lúc 23:22

1) Áp dụng bất đẳng thức AM - GM và bất đẳng thức Schwarz:

\(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\ge\dfrac{1}{a}+\dfrac{1}{\dfrac{a+b}{2}}\ge\dfrac{4}{a+\dfrac{a+b}{2}}=\dfrac{8}{3a+b}\ge8\).

Đẳng thức xảy ra khi a = b = \(\dfrac{1}{4}\).

Nguyễn Việt Lâm
23 tháng 1 2021 lúc 23:54

2.

\(4=a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Rightarrow a+b\le2\sqrt{2}\)

Đồng thời \(\left(a+b\right)^2\ge a^2+b^2\Rightarrow a+b\ge2\)

\(M\le\dfrac{\left(a+b\right)^2}{4\left(a+b+2\right)}=\dfrac{x^2}{4\left(x+2\right)}\) (với \(x=a+b\Rightarrow2\le x\le2\sqrt{2}\) )

\(M\le\dfrac{x^2}{4\left(x+2\right)}-\sqrt{2}+1+\sqrt{2}-1\)

\(M\le\dfrac{\left(2\sqrt{2}-x\right)\left(x+4-2\sqrt{2}\right)}{4\left(x+2\right)}+\sqrt{2}-1\le\sqrt{2}-1\)

Dấu "=" xảy ra khi \(x=2\sqrt{2}\) hay \(a=b=\sqrt{2}\)

3. Chia 2 vế giả thiết cho \(x^2y^2\)

\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\ge\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\)

\(\Rightarrow0\le\dfrac{1}{x}+\dfrac{1}{y}\le4\)

\(A=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\right)=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\le16\)

Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)