So sánh \(A=\dfrac{1}{4^2}+\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{21^2}\)và \(\dfrac{-3}{-8}\)
so sánh các hỗn số sau:
\(7\dfrac{4}{5}\) và \(9\dfrac{1}{2}\)
\(7\dfrac{1}{6}\) và \(3\dfrac{4}{5}\)
\(9\dfrac{9}{1}\) và \(5\dfrac{8}{6}\)
\(7\dfrac{4}{5}và9\dfrac{1}{2}\\ Tacó:7< 9\\ \Rightarrow7\dfrac{4}{5}< 9\dfrac{1}{2}\\ 7\dfrac{1}{6}và3\dfrac{4}{5}\\ Tacó:7>3\\ \Rightarrow7\dfrac{1}{6}>3\dfrac{4}{5}\)
Câu cuối không phải hỗn số
6. ÉT O ÉT
\(\dfrac{9}{7}\) và \(\dfrac{5}{6}\) \(\dfrac{4}{7}\) và \(\dfrac{8}{21}\) \(\dfrac{2}{5};\dfrac{1}{3}\) và \(\dfrac{1}{2}\) \(\dfrac{1}{3};\dfrac{4}{3}\) và\(\dfrac{1}{5}\)
a: 9/7>1>5/6
b: 4/7=12/21>8/21
c: 2/5=12/30
1/3=10/30
1/2=15/30
mà 10<12<15
nên 1/3<2/5<1/2
a) So sánh hai phân số:
\(\dfrac{6}{11}\) và \(\dfrac{8}{11}\) \(\dfrac{13}{8}\) và \(\dfrac{8}{8}\) \(\dfrac{7}{24}\) và \(\dfrac{1}{6}\) \(\dfrac{3}{2}\) và \(\dfrac{5}{4}\)
b) Viết các phân số sau theo thứ tự từ bé đến lớn:
\(\dfrac{1}{4},\dfrac{3}{4}\) và \(\dfrac{5}{8}\) \(\dfrac{2}{3},\dfrac{2}{9}\) và \(\dfrac{5}{9}\)
a)
b)
+) Quy đồng mẫu số ba phân số $\frac{1}{4};\frac{3}{4};\frac{5}{8}$
$\frac{1}{4} = \frac{{1 \times 2}}{{4 \times 2}} = \frac{2}{8}$
$\frac{3}{4} = \frac{{3 \times 2}}{{4 \times 2}} = \frac{6}{8}$ ; Giữ nguyên phân số $\frac{5}{8}$
Vì $\frac{2}{8} < \frac{5}{8} < \frac{6}{8}$ nên $\frac{1}{4} < \frac{5}{8} < \frac{3}{4}$
Vậy các phân số xếp theo thứ tự từ bé đến lớn là: $\frac{1}{4};\,\,\frac{5}{8};\,\,\frac{3}{4}$
+) Quy đồng mẫu số ba phân số $\frac{2}{3};\,\,\frac{2}{9};\,\,\frac{5}{9}$
$\frac{2}{3} = \frac{{2 \times 3}}{{3 \times 3}} = \frac{6}{9}$ ; Giữ nguyên phân số $\frac{2}{9}$; $\frac{5}{9}$
Vì $\frac{2}{9} < \frac{5}{9} < \frac{6}{9}$ nên $\frac{2}{9} < \frac{5}{9} < \frac{2}{3}$
Vậy các phân số xếp theo thứ tự từ bé đến lớn là $\frac{2}{9};\,\,\frac{5}{9};\,\,\frac{2}{3}$
So sánh các phân số sau
\(a,\dfrac{-7}{6}và\dfrac{-11}{9}\) b,\(\dfrac{5}{-7}và\dfrac{-4}{5}\)
c,\(\dfrac{-8}{7}và\dfrac{-2}{5}\) d,\(\dfrac{-2}{5}và\dfrac{1}{3}\)
a: \(\dfrac{-7}{6}=\dfrac{-7\cdot3}{6\cdot3}=\dfrac{-21}{18}\)
\(\dfrac{-11}{9}=\dfrac{-11\cdot2}{9\cdot2}=\dfrac{-22}{18}\)
mà -21>-22
nên \(-\dfrac{7}{6}>-\dfrac{11}{9}\)
b: \(\dfrac{5}{-7}=\dfrac{-5}{7}=\dfrac{-5\cdot5}{7\cdot5}=\dfrac{-25}{35}\)
\(\dfrac{-4}{5}=\dfrac{-4\cdot7}{5\cdot7}=\dfrac{-28}{35}\)
mà -25>-28
nên \(\dfrac{5}{-7}>\dfrac{-4}{5}\)
c: \(\dfrac{-8}{7}< -1\)
\(-1< -\dfrac{2}{5}\)
Do đó: \(-\dfrac{8}{7}< -\dfrac{2}{5}\)
d: \(-\dfrac{2}{5}< 0\)
\(0< \dfrac{1}{3}\)
Do đó: \(-\dfrac{2}{5}< \dfrac{1}{3}\)
Câu 5 : A= \(\dfrac{1}{2}\) +\(\dfrac{1}{2^2}\)+ \(\dfrac{1}{2^3}\)+ \(\dfrac{1}{2^4}\)+ ....+\(\dfrac{1}{2^{2021}}\)+\(\dfrac{1}{2^{2022}}\)và B= \(\dfrac{1}{3}\)+\(\dfrac{1}{4}\)+\(\dfrac{1}{5}\)+\(\dfrac{17}{60}\)
a) Rút gọn A
b) So sánh A và B
a) \(A=2A-A\)
\(=2\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2022}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2022}}\right)\)
\(=1+\dfrac{1}{2}+...+\dfrac{1}{2^{2021}}-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2022}}\right)\)
\(=1-\dfrac{1}{2^{2022}}\)
b) \(B=\dfrac{20+15+12+17}{60}=\dfrac{4}{5}=1-\dfrac{1}{5}\)
\(A>B\left(Vì\left(\dfrac{1}{2^{2022}}< \dfrac{1}{5}\right)\right)\)
a) A = 2 A − A = 2 ( 1 2 + 1 2 2 + . . . + 1 2 2022 ) − ( 1 2 + 1 2 2 + . . . + 1 2 2022 ) = 1 + 1 2 + . . . + 1 2 2021 − ( 1 2 + 1 2 2 + . . . + 1 2 2022 ) = 1 − 1 2 2022 b) B = 20 + 15 + 12 + 17 60 = 4 5 = 1 − 1 5 A > B ( V ì ( 1 2 2022 < 1 5 ) )
a) rút gọn: \(\dfrac{4^5x9^4-2x6^9}{2^{10}x3^8+6^8x20}\)
b) Cho A=\(\dfrac{1}{2}+\dfrac{2}{2^2}+\dfrac{3}{2^3}+\dfrac{4}{2^4}+\dfrac{5}{2^5}+...\dfrac{99}{2^{99}}+\dfrac{100}{2^{100}}\).So sánh A với 2
a: \(\dfrac{4^5\cdot9^4-2\cdot6^9}{2^{10}\cdot3^8+6^8\cdot20}\)
\(=\dfrac{2^{10}\cdot3^8-2\cdot2^9\cdot3^9}{2^{10}\cdot3^8+2^8\cdot3^8\cdot2^2\cdot5}\)
\(=\dfrac{2^{10}\cdot3^8-2^{10}\cdot3^9}{2^{10}\cdot3^8+2^{10}\cdot3^8\cdot5}\)
\(=\dfrac{2^{10}\cdot3^8\left(1-3\right)}{2^{10}\cdot3^8\left(1+5\right)}=\dfrac{-2}{6}=-\dfrac{1}{3}\)
Quy đồng mẫu số rồi so sánh hai phân số:
a) \(\dfrac{2}{5}\) và \(\dfrac{3}{10}\) b) \(\dfrac{7}{12}\) và \(\dfrac{5}{6}\) c) \(\dfrac{3}{4}\) và \(\dfrac{1}{2}\) d) \(\dfrac{8}{3}\) và \(\dfrac{11}{21}\)
a) \(\dfrac{2}{5}=\dfrac{4}{10}\)
\(\dfrac{4}{10}>\dfrac{3}{10}\)
b) \(\dfrac{5}{6}=\dfrac{10}{12}\)
\(\dfrac{7}{12}< \dfrac{10}{12}\)
c) \(\dfrac{1}{2}=\dfrac{2}{4}\)
\(\dfrac{3}{4}< \dfrac{2}{4}\)
d) \(\dfrac{8}{3}=\dfrac{56}{21}\)
\(\dfrac{56}{21}>\dfrac{11}{21}\)
Bài 4: So sánh:
a. \(\dfrac{2}{3}\)và\(\dfrac{1}{4}\)
b. \(\dfrac{7}{10}\)và\(\dfrac{7}{8}\)
c. \(\dfrac{6}{7}\)và\(\dfrac{3}{5}\)
d. \(\dfrac{14}{21}\)và\(\dfrac{60}{72}\)
\(a:ta.c\text{ó}:BCNN:12\\ \dfrac{2}{3}=\dfrac{2\cdot4}{3\cdot4}=\dfrac{8}{12};\dfrac{1}{4}=\dfrac{1\cdot3}{4\cdot3}=\dfrac{3}{12}\\ v\text{ì }\dfrac{8}{12}< \dfrac{3}{12}n\text{ê}n\dfrac{2}{3}< \dfrac{1}{4}\\ b:ta.c\text{ó}:\\ 10=2\cdot5\\ 8=2^3\\ \Rightarrow BCNN=2^3\cdot5=8\cdot5=40\\ \dfrac{7}{10}=\dfrac{7\cdot4}{10\cdot4}=\dfrac{28}{40};\dfrac{7}{8}=\dfrac{7\cdot5}{8\cdot5}=\dfrac{35}{40}\\ v\text{ì }\dfrac{28}{40}< \dfrac{35}{40}n\text{ê}n\dfrac{7}{10}< \dfrac{7}{8}\\ c:ta.c\text{ó}:\\ 7=7;5=5\\ \Rightarrow BCNN=7\cdot5=35\\ \dfrac{6}{7}=\dfrac{6\cdot5}{7\cdot5}=\dfrac{30}{35};\dfrac{3}{5}=\dfrac{3\cdot7}{5\cdot7}=\dfrac{21}{35}\\ v\text{ì }\dfrac{30}{35}>\dfrac{21}{35}n\text{ê}n\dfrac{6}{7}>\dfrac{3}{5}\\ d:ta.c\text{ó}:\\ 21=3\cdot7\\ 72=2^3\cdot3^2\\ \Rightarrow BCNN=2^3\cdot3^2\cdot7=504\\ \dfrac{14}{21}=\dfrac{14\cdot24}{21\cdot24}=\dfrac{336}{504};\dfrac{60}{72}=\dfrac{60\cdot7}{72\cdot7}=\dfrac{420}{504}\\ v\text{ì }\dfrac{336}{504}< \dfrac{420}{504}n\text{ê}n\dfrac{14}{21}< \dfrac{60}{72}\)
3\(\dfrac{1}{3}\)+\(\dfrac{5}{6}\) 4\(\dfrac{5}{7}\)-2\(\dfrac{11}{21}\) 3\(\dfrac{1}{4}\)x\(\dfrac{2}{5}\) 4\(\dfrac{7}{8}\):\(\dfrac{1}{4}\)
\(3\dfrac{1}{3}+\dfrac{5}{6}=\dfrac{10}{3}+\dfrac{5}{6}=\dfrac{20}{6}+\dfrac{5}{6}=\dfrac{25}{6}\)
\(4\dfrac{5}{7}-2\dfrac{11}{21}=\dfrac{33}{7}-\dfrac{53}{21}=\dfrac{99}{21}-\dfrac{53}{21}=\dfrac{46}{21}\)
\(3\dfrac{1}{4}x\dfrac{2}{5}=\dfrac{13}{3}x\dfrac{2}{5}=\dfrac{26}{15}\)
\(4\dfrac{7}{8}:\dfrac{1}{4}=\dfrac{39}{8}.4=\dfrac{39}{2}\)