Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
gyurbsrg
Xem chi tiết
Trần Ái Linh
26 tháng 5 2021 lúc 21:18

PT có 2 nghiệm `<=> \Delta' >0 <=> 2^2-1.(m+1)>0<=> m<3`

Viet: `x_1+x_2=-4`

`x_1 x_2=m+1`

`(x_1)/(x_2)+(x_2)/(x_1)=10/3`

`<=> (x_1^2+x_2^2)/(x_1x_2)=10/3`

`<=> ((x_1+x_2)^2-2x_1x_2)/(x_1x_2)=10/3`

`<=> (4^2-2(m+1))/(m+1)=10/3`

`<=> m=2` (TM)

Vậy `m=2`.

Gallavich
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 4 2022 lúc 16:23

1.

\(a+b+c=0\) nên pt luôn có 2 nghiệm

\(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-1\end{matrix}\right.\)

\(A=\dfrac{2x_1x_2+3}{x_1^2+x_2^2+2x_1x_2+2}=\dfrac{2x_1x_2+3}{\left(x_1+x_2\right)^2+2}=\dfrac{2\left(m-1\right)+3}{m^2+2}=\dfrac{2m+1}{m^2+2}\)

\(A=\dfrac{m^2+2-\left(m^2-2m+1\right)}{m^2+2}=1-\dfrac{\left(m-1\right)^2}{m^2+2}\le1\)

Dấu "=" xảy ra khi \(m=1\)

2.

\(\Delta=m^2-4\left(m-2\right)=\left(m-2\right)^2+4>0;\forall m\) nên pt luôn có 2 nghiệm pb

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-2\end{matrix}\right.\)

\(\dfrac{\left(x_1^2-2\right)\left(x_2^2-2\right)}{\left(x_1-1\right)\left(x_2-1\right)}=4\Rightarrow\dfrac{\left(x_1x_2\right)^2-2\left(x_1^2+x_2^2\right)+4}{x_1x_2-\left(x_1+x_2\right)+1}=4\)

\(\Rightarrow\dfrac{\left(x_1x_2\right)^2-2\left(x_1+x_2\right)^2+4x_1x_2+4}{x_1x_2-\left(x_1+x_2\right)+1}=4\)

\(\Rightarrow\dfrac{\left(m-2\right)^2-2m^2+4\left(m-2\right)+4}{m-2-m+1}=4\)

\(\Rightarrow-m^2=-4\Rightarrow m=\pm2\)

Thanh Hân
Xem chi tiết
𝓓𝓾𝔂 𝓐𝓷𝓱
22 tháng 5 2021 lúc 22:58

Ta có: \(\Delta=4m^2+4m-11\)

Để phương trình có 2 nghiệm phân biệt \(\Leftrightarrow4m^2+4m-11>0\)

Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m+3\\x_1x_2=2m+5\end{matrix}\right.\)

Để phương trình có 2 nghiệm dương phân biệt

\(\Leftrightarrow\left\{{}\begin{matrix}4m^2+4m-11>0\\2m+3>0\\2m+5>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m< \dfrac{-1-2\sqrt{3}}{2}\\m>\dfrac{-1+2\sqrt{3}}{2}\end{matrix}\right.\\m>-\dfrac{3}{2}\\m>-\dfrac{5}{2}\end{matrix}\right.\) \(\Leftrightarrow m>\dfrac{-1+2\sqrt{3}}{2}\)

 Mặt khác: \(\dfrac{1}{\sqrt{x_1}}+\dfrac{1}{\sqrt{x_2}}=\dfrac{4}{3}\)

\(\Rightarrow\dfrac{x_1+x_2+2\sqrt{x_1x_2}}{x_1x_2}=\dfrac{16}{9}\) \(\Rightarrow\dfrac{2m+3+2\sqrt{2m+5}}{2m+5}=\dfrac{16}{9}\)

\(\Rightarrow18m+27+18\sqrt{2m+5}=32m+80\)

\(\Leftrightarrow14m-53=18\sqrt{2m+5}\)

\(\Rightarrow\) ...

 

Thanh Hân
22 tháng 5 2021 lúc 22:36

giúp mình với ạ ! Mình cảm ơn ạ 

Xanh đỏ - OhmNanon
Xem chi tiết
Vô danh
18 tháng 3 2022 lúc 21:53

1, ĐKXĐ:\(x\ne2,y\ne1\)

Đặt `1/(x-2)` = a, `1/(y-1)` = b

\(Hệ.\Leftrightarrow\left\{{}\begin{matrix}a+b=2\\2a-3b=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{7}{5}\\b=\dfrac{3}{5}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x-2}=\dfrac{7}{5}\\\dfrac{1}{y-1}=\dfrac{3}{5}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}7x-14=5\\3y-3=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{19}{7}\\y=\dfrac{8}{3}\end{matrix}\right.\)\(2,\Delta'=\left[-\left(m+1\right)\right]^2-4m=m^2+2m+1-4m=m^2-2m+1=\left(m-1\right)^2\ge0\)

Để pt có 2 nghiệm phân biệt thì \(\Delta'>0\Leftrightarrow\left(m-1\right)^2>0\Leftrightarrow m-1\ne0\Leftrightarrow m\ne1\)

b, Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1x_2=4m\end{matrix}\right.\)

\(\left(x_1-x_2\right)^2-x_1x_2=3\\ \Leftrightarrow\left(x_1+x_2\right)^2-5x_1x_2=3\\ \Leftrightarrow\left(2m+2\right)^2-5.4m-3=0\\ \Leftrightarrow4m^2+8m+4-20m-3=0\\ \Leftrightarrow4m^2-12m+1=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3+2\sqrt{2}}{2}\\x=\dfrac{3-2\sqrt{2}}{2}\end{matrix}\right.\)

dũng ct
Xem chi tiết
missing you =
16 tháng 12 2021 lúc 23:23

\(1.\left(x\ne\pm1\right)\Rightarrow pt\Leftrightarrow\left(x-m\right)\left(x-1\right)=\left(x+1\right)\left(x-2\right)\)

\(\Leftrightarrow x^2-x\left(m+1\right)+m=x^2-x-2\)

\(\Leftrightarrow-x\left(m+1\right)+m=-x-2\)

\(\Leftrightarrow x=\dfrac{m+2}{m}\left(m\ne0\right)\)

\(pt-có-ngo-duy-nhất\Leftrightarrow\left\{{}\begin{matrix}\dfrac{m+2}{m}\ne1\\\dfrac{m+2}{m}\ne-1\end{matrix}\right.\)\(\Leftrightarrow m\ne-1\)

\(\Rightarrow\left\{{}\begin{matrix}m\ne0\\m\ne-1\end{matrix}\right.\)

\(2.\left\{{}\begin{matrix}x^2+8y^2=12\left(1\right)\\x^3+2xy^2+12y=0\left(2\right)\end{matrix}\right.\)

\(\left(2\right)\Leftrightarrow x^3+2xy^2+y\left(x^2+8y^2\right)=0\)

\(\Leftrightarrow\left(x+2y\right)\left(x^2-xy+4y^2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-2y\left(3\right)\\x^2-xy+4y^2=\left(x-\dfrac{y}{2}\right)^2+\dfrac{15}{4}y^2=0\left(4\right)\end{matrix}\right.\)

\(\left(3\right)\left(1\right)\Rightarrow4y^2+8y^2=12\Leftrightarrow\left[{}\begin{matrix}y=1\Rightarrow x=-2\\y=-1\Rightarrow x=2\end{matrix}\right.\)

với \(x=y=0\) không là nghiệm của hệ pt

với \(x=y\ne0\Rightarrow\left(4\right)>0\Rightarrow\left(4\right)-vô-nghiệm\)

\(\Rightarrow\left(x;y\right)=\left\{\left(-2;1\right);\left(2;-1\right)\right\}\)

Nguyễn Hoàng Minh
16 tháng 12 2021 lúc 23:23

\(1,\Leftrightarrow\left(x-m\right)\left(x-1\right)=x^2-x-2\\ \Leftrightarrow x^2-x-mx+m-x^2+x+2=0\\ \Leftrightarrow mx=m+2\)

PT có nghiệm duy nhất \(\Leftrightarrow m\ne0\)

\(2,\Leftrightarrow\left\{{}\begin{matrix}x^2y+8y^3=12y\\x^3+2xy^2+12y=0\end{matrix}\right.\)

Thế \(PT\left(1\right)\rightarrow PT\left(2\right)\Leftrightarrow x^3+2xy^2+x^2y+8y^3=0\)

\(\Leftrightarrow\left(x+2y\right)\left(x^2-2xy+4y^2\right)+xy\left(x+2y\right)=0\\ \Leftrightarrow\left(x+2y\right)\left(x^2-xy+4y^2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-2y\\\left(x-\dfrac{1}{2}y\right)^2+\dfrac{15}{4}y^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2y\\\left\{{}\begin{matrix}x-\dfrac{1}{2}y=0\\y^2=0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2y\\x=y=0\end{matrix}\right.\)

Thay \(x=y=0\Leftrightarrow0+0=12\left(loại\right)\)

Thay \(x=-2y\Leftrightarrow4y^2+8y^2=12y^2=12\Leftrightarrow\left[{}\begin{matrix}y=1\Rightarrow x=-2\\y=-1\Rightarrow x=2\end{matrix}\right.\)

Vậy \(\left(x;y\right)\in\left\{\left(-2;1\right);\left(2;-1\right)\right\}\)

hilo
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 4 2023 lúc 22:07

Δ=(2m-2)^2-4(m-3)

=4m^2-8m+4-4m+12

=4m^2-12m+16

=4m^2-12m+9+7=(2m-3)^2+7>=7>0 với mọi m

=>Phương trình luôn có hai nghiệm phân biệt

\(\left(\dfrac{1}{x1}-\dfrac{1}{x2}\right)^2=\dfrac{\sqrt{11}}{2}\)

=>\(\dfrac{1}{x_1^2}+\dfrac{1}{x_2^2}-\dfrac{2}{x_1x_2}=\dfrac{\sqrt{11}}{2}\)

=>\(\dfrac{\left(\left(x_1+x_2\right)^2-2x_1x_2\right)}{\left(x_1\cdot x_2\right)^2}-\dfrac{2}{x_1\cdot x_2}=\dfrac{\sqrt{11}}{2}\)

=>\(\dfrac{\left(2m-2\right)^2-2\left(m-3\right)}{\left(-m+3\right)^2}-\dfrac{2}{-m+3}=\dfrac{\sqrt{11}}{2}\)

=>\(\dfrac{4m^2-8m+4-2m+6}{\left(m-3\right)^2}+\dfrac{2}{m-3}=\dfrac{\sqrt{11}}{2}\)

=>\(\dfrac{4m^2-10m+10+2m-6}{\left(m-3\right)^2}=\dfrac{\sqrt{11}}{2}\)

=>\(\sqrt{11}\left(m-3\right)^2=2\left(4m^2-8m+4\right)\)

=>\(\sqrt{11}\left(m-3\right)^2=2\left(2m-2\right)^2\)

=>\(\Leftrightarrow\left(\dfrac{m-3}{2m-2}\right)^2=\dfrac{2}{\sqrt{11}}\)

=>\(\left[{}\begin{matrix}\dfrac{m-3}{2m-2}=\sqrt{\dfrac{2}{\sqrt{11}}}\\\dfrac{m-3}{2m-2}=-\sqrt{\dfrac{2}{\sqrt{11}}}\end{matrix}\right.\)

mà m nguyên

nên \(m\in\varnothing\)

hoa thi
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 5 2022 lúc 19:50

1: Khi m=3 thì hệ phương trình (1) trở thành:

\(\left\{{}\begin{matrix}3x-2y=-1\\2x+3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{13}\\y=\dfrac{5}{13}\end{matrix}\right.\)

2: Khi x=-1/2 và y=2/3 vào hệ phương trình, ta được:

\(\left\{{}\begin{matrix}2\cdot\dfrac{-1}{2}+3\cdot\dfrac{2}{3}=1\\-\dfrac{1}{2}m-\dfrac{4}{3}=-1\end{matrix}\right.\Leftrightarrow m\cdot\dfrac{-1}{2}=\dfrac{1}{3}\)

hay m=-2/3

Big City Boy
Xem chi tiết
Nguyễn Trọng Chiến
11 tháng 2 2021 lúc 16:29

ĐKXĐ: \(x\ne1;x\ne-2\)\(\Rightarrow\left(2x-m\right)\left(x+2\right)+\left(x+1\right)\left(x-1\right)=3\left(x-1\right)\left(x+2\right)\Leftrightarrow2x^2+4x-mx-2m+x^2-1=3x^2+3x-6\Leftrightarrow3x^2+4x-mx-2m-3x^2-3x=-6\) \(\Leftrightarrow x-mx=2m-6\Leftrightarrow x\left(1-m\right)=2m-6\Leftrightarrow x=\dfrac{2m-6}{1-m}\)

\(\Rightarrow\) Để pt có nghiệm \(\Leftrightarrow m\ne1\)  Vậy...

Lê Ngọc Huyền
Xem chi tiết
Akai Haruma
15 tháng 3 2021 lúc 12:49

Lời giải:

Để pt có 2 nghiệm $x_1,x_2$ thì:

$\Delta'=1+(3+m)=4+m\geq 0\Leftrightarrow m\geq -4$ (chứ không phải với mọi m như đề bạn nhé)!

Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=-2\\ x_1x_2=-(m+3)\end{matrix}\right.\)

$x_1, x_2\neq 0\Leftrightarrow -(m+3)\neq 0\Leftrightarrow m\neq -3$

$\frac{x_1}{x_2}-\frac{x_2}{x_1}=\frac{-8}{3}$

$\Leftrightarrow \frac{x_1^2-x_2^2}{x_1x_2}=\frac{-8}{3}$

$\Leftrightarrow \frac{-2(x_1-x_2)}{-(m+3)}=\frac{-8}{3}$
$\Leftrightarrow x_1-x_2=\frac{4}{3}(m+3)$

$\Rightarrow (x_1-x_2)^2=\frac{16}{9}(m+3)^2$

$\Leftrightarrow (x_1+x_2)^2-4x_1x_2=\frac{16}{9}(m+3)^2$
$\Leftrightarrow 4+4(m+3)=\frac{16}{9}(m+3)^2$

$\Leftrightarrow m+3=3$ hoặc $m+3=\frac{-3}{4}$

$\Leftrightarrow m=0$ hoặc $m=\frac{-15}{4}$ (đều thỏa mãn)