Giải phương trình ẩn x sau : \(^{x^3-\left(a+b+c\right)x^2=-\left(ab+ac+bc\right)x+abc}\)
giải phương trình sau
\(\left(\dfrac{x-a}{bc}-\dfrac{1}{b}\right)+\left(\dfrac{x-b}{ca}-\dfrac{1}{c}\right)+\left(\dfrac{x-c}{ab}-\dfrac{1}{a}\right)=\dfrac{ab+bc+ca}{abc}\)
Giải các phương trình sau:
\(\frac{x-a}{bc}+\frac{x-b}{ac}+\frac{x-c}{ab}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)với x là ẩn và abc(ab+bc+ca)≠0
Cho a, b, c là độ dài các cạnh của một tam giác. Chứng minh các phương trình sau có
nghiệm
a \(a^2x^2+\left(a^2+b^2-c^2\right)x+b^2=0\)
b \(x^2+\left(a+b+c\right)x+\left(ab+bc+ac\right)=0\)
a.
\(\Delta=\left(a^2+b^2-c^2\right)^2-4a^2b^2=\left(a^2+b^2-c^2-2ab\right)\left(a^2+b^2-c^2+2ab\right)\)
\(=\left[\left(a-b\right)^2-c^2\right]\left[\left(a+b\right)^2-c^2\right]\)
\(=\left(a-b-c\right)\left(a-b+c\right)\left(a+b-c\right)\left(a+b+c\right)\)
Do a;b;c là độ dài 3 cạnh của 1 tam giác nên:
\(\left\{{}\begin{matrix}a< b+c\Rightarrow a-b-c< 0\\a+c>b\Rightarrow a-b+c>0\\a+b>c\Rightarrow a+b-c>0\end{matrix}\right.\)
\(\Rightarrow\left(a-b-c\right)\left(a-b+c\right)\left(a+b-c\right)\left(a+b+c\right)< 0\)
\(\Rightarrow\Delta< 0\)
\(\Rightarrow\) Phương trình vô nghiệm
Đề bài sai
b.
\(\Delta=\left(a+b+c\right)^2-4\left(ab+bc+ca\right)\)
\(=a^2+b^2+c^2-2ab-2bc-2ca\)
Do a;b;c là độ dài 3 cạnh của 1 tam giác nên:
\(\left\{{}\begin{matrix}a< b+c\\b< c+a\\c< a+b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a^2< ab+ac\\b^2< ab+bc\\c^2< ac+bc\end{matrix}\right.\)
\(\Rightarrow a^2+b^2+c^2< 2ab+2bc+2ca\)
\(\Rightarrow a^2+b^2+c^2-2ab-2bc-2ca< 0\)
\(\Rightarrow\Delta< 0\)
\(\Rightarrow\) Phương trình vô nghiệm
Đề bài sai
1.Giải phương trình: \(\left(1+\frac{1}{x}\right)^3.\left(1+x^3\right)=16\)
2.Cho a,b,c là các số thực dương thỏa mãn abc=1. Chứng minh rằng:
\(\frac{1}{a^3.\left(7b+3c\right)}+\frac{1}{b^3.\left(7c+3a\right)}+\frac{1}{c^3.\left(7a+3b\right)}\ge\frac{1}{10}.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
3.Tìm tham số m để phương trình ẩn x sau \(\left(x^2+4x+12\right).\left(x^2+12x+20\right)=m\)có 4 nghiệm phân biệt
GIÚP MÌNH VỚI NHA
Giải các phương trình sau vs ẩn là x
a) \(\dfrac{x-a}{bc}+\dfrac{x-b}{ac}+\dfrac{x-c}{ab}=2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
Giải các phương trình sau với ẩn là x
a)\(\dfrac{x-a}{bc}+\dfrac{x-b}{ac}+\dfrac{x-c}{ab}=2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
b) \(\dfrac{x-ab}{a+b}+\dfrac{x-ac}{a+c}+\dfrac{x-bc}{b+c}=a+b+c\)
1. giải phương trình tích:
a) \(\left(x+3\right)\left(x^2+2021\right)=0\)
\(\)2. giải các phương trình sau bằng cách đưa về phương trình tích:
b) \(x\left(x-3\right)+3\left(x-3\right)=0\)
c) \(\left(x^2-9\right)+\left(x+3\right)\left(3-2x\right)=0\)
d) \(3x^2+3x=0\)
e) \(x^2-4x+4=4\)
`a,(x+3)(x^2+2021)=0`
`x^2+2021>=2021>0`
`=>x+3=0`
`=>x=-3`
`2,x(x-3)+3(x-3)=0`
`=>(x-3)(x+3)=0`
`=>x=+-3`
`b,x^2-9+(x+3)(3-2x)=0`
`=>(x-3)(x+3)+(x+3)(3-2x)=0`
`=>(x+3)(-x)=0`
`=>` $\left[ \begin{array}{l}x=0\\x=-3\end{array} \right.$
`d,3x^2+3x=0`
`=>3x(x+1)=0`
`=>` $\left[ \begin{array}{l}x=0\\x=-1\end{array} \right.$
`e,x^2-4x+4=4`
`=>x^2-4x=0`
`=>x(x-4)=0`
`=>` $\left[ \begin{array}{l}x=0\\x=4\end{array} \right.$
1) a) \(\left(x+3\right).\left(x^2+2021\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+3=0\\x^2+2021=0\end{matrix}\right.\\\left[{}\begin{matrix}x=-3\left(nhận\right)\\x^2=-2021\left(loại\right)\end{matrix}\right. \)
=> S={-3}
Bài 1:
a) Ta có: \(\left(x+3\right)\left(x^2+2021\right)=0\)
mà \(x^2+2021>0\forall x\)
nên x+3=0
hay x=-3
Vậy: S={-3}
Bài 2:
b) Ta có: \(x\left(x-3\right)+3\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
Vậy: S={3;-3}
Bất phương trình nào sau đây là bất phương trình bậc nhất hai ẩn?
A. \(x + y > 3\)
B. \({x^2} + {y^2} \le 4\)
C. \(\left( {x - y} \right)\left( {3x + y} \right) \ge 1\)
D. \({y^3} - 2 \le 0\)
Đáp án A: \(x + y > 3\) là bất phương trình bậc nhất hai ẩn x và y có a=1, b=1, c=3
Đáp án B: \({x^2} + {y^2} \le 4\) không là bất phương trình bậc nhất hai ẩn vì có \({x^2},{y^2}\)
Đáp án C: \(\left( {x - y} \right)\left( {3x + y} \right) \ge 1 \Leftrightarrow 3{x^2} - 2xy - {y^2} \ge 1\) không là bất phương trình bậc nhất hai ẩn vì có \({x^2},{y^2}\)
Đáp án D: \({y^3} - 2 \le 0\) không là bất phương trình bậc nhất hai ẩn vì có \({y^3}\).
Chọn A
Giải phương trình :
\(a,\frac{1}{a+b-x}=\frac{1}{a}+\frac{1}{b}-\frac{1}{x}\)(x là ẩn số )
\(b,\frac{\left(b-c\right)\left(1+a\right)^2}{x+a^2}+\frac{\left(c-a\right)\left(1+b\right)^2}{x+b^2}+\frac{\left(a-b\right)\left(1+c\right)^2}{x+c^2}\)