Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
....
Xem chi tiết
Ricky Kiddo
28 tháng 8 2021 lúc 18:15

a) \(x^4-x^2+\dfrac{1}{4}-\dfrac{225}{4}=0\\ \left(x^2-\dfrac{1}{2}\right)^2-\dfrac{15}{2}^2=0\\ \left(x+7\right)\left(x-8\right)=0\\ \left[{}\begin{matrix}x=8\\x=-7\end{matrix}\right.\)

Vậy x = 8 hoặc x = -7

 

Nguyễn Lê Phước Thịnh
28 tháng 8 2021 lúc 21:20

a: Ta có: \(x^4-x^2-56=0\)

\(\Leftrightarrow x^4-8x^2+7x^2-56=0\)

\(\Leftrightarrow\left(x^2-8\right)\left(x^2+7\right)=0\)

\(\Leftrightarrow x^2-8=0\)

hay \(x\in\left\{2\sqrt{2};-2\sqrt{2}\right\}\)

Quyết Tâm Chiến Thắng
Xem chi tiết
alibaba nguyễn
10 tháng 3 2019 lúc 11:48

a/ Đặt (x^2 - 5x) = a thì ta có

a^2 + 10a + 24 = 0

<=> (a + 4)(a + 6) = 0

Làm nốt

alibaba nguyễn
10 tháng 3 2019 lúc 11:52

b/ (x - 4)(x - 5)(x - 6)(x - 7) = 1680

<=> (x - 4)(x - 7)(x - 5)(x - 6) = 1680

<=> (x^2 - 11x + 28)(x^2 - 11x + 30) = 1680

Đặt x^2 - 11x + 28 = a thì ta có

a(a + 2) = 1680

<=> (a - 40)(a + 42) = 0

Làm nốt

alibaba nguyễn
10 tháng 3 2019 lúc 11:56

c/ (x + 1)^4 + (x - 1)^4 = 82

<=> x^4 + 6x^2 - 40 = 0

Đặt x^2 = a

=> a^2 + 6a - 40 = 0

<=> (a - 4)(a + 10) = 0

Trần Ích Bách
Xem chi tiết
Tuấn Anh
12 tháng 2 2020 lúc 22:12

Mk chỉ làm đc câu a) thôi còn câu b mk cũng đang hỏi.

Đặt \(4-x=a\); \(x-2=b\) \(\Rightarrow\) \(a+b=2\)

\(\Leftrightarrow\)\(\left(a^3+b^3\right)\left(a^2+b^2\right)-a^2b^2\left(a+b\right)=32\)

\(\Leftrightarrow\)\(\left[\left(a+b\right)^3-3ab\left(a+b\right)\right]\left[\left(a+b\right)^2-2ab\right]-a^2b^2\left(a+b\right)=32\)

thay \(a+b=2\) ta có:

\(\left(8-6ab\right)\left(4-2ab\right)-2\left(ab\right)^2=32\)

\(\Leftrightarrow\) \(32-40ab+10\left(ab\right)^2=32\)

\(\Leftrightarrow\)\(10ab\left(-4+ab\right)+32-32=0\)

\(\Leftrightarrow\)\(ab\left(ab-4\right)=0\)

\(\Leftrightarrow\)\(\left[{}\begin{matrix}ab=0\\ab-4=0\end{matrix}\right.\)

Với \(ab=0\) thì \(\left(4-x\right)\left(x-2\right)=0\)

\(\Leftrightarrow\)\(\left[{}\begin{matrix}4-x=0\\x-2=0\end{matrix}\right.\) \(\Rightarrow\) \(\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\)

Với \(ab-4=0\) thì \(\left(4-x\right)\left(x-2\right)-4=0\)

\(\Leftrightarrow\)\(6x-8-x^2-4=0\)

\(\Leftrightarrow\)\(6x-12-x^2=0\)

\(\Leftrightarrow\)\(-\left(x^2-6x+12\right)=0\)

\(\Leftrightarrow\)\(-\left(x^2-6x+9+3\right)=0\)

\(\Leftrightarrow\)\(-\left(x-3\right)^2-3=0\) ( vô lí )

Vậy pt có tập nghiệm \(S=\left\{2;4\right\}\)

Khách vãng lai đã xóa
Yuu
Xem chi tiết
Trần Thị Bích Trâm
14 tháng 2 2018 lúc 19:42

a) (x - 2)4 + (x - 3)4 = 1

=> (x 2 - 4x + 4)2 + (x 2 - 6x + 9)2 = 1

=> x 4 + 16x 2 + 16 - 8x 3 - 32x + 8x 2 + x 4 + 36x 2 + 81 - 12x 3 - 108x + 18x 2 - 1 = 0

=> 2x 4 - 20x 3 + 78x 2 - 140x + 96 = 0

=> 2.(x - 2)(x - 3)(x 2 - 5x + 8) = 0

=> x = 2 hoặc x = 3 hoặc x 2 - 5x + 8 = 0 , mà x 2 - 5x + 8 > 0 => pt vô nghiệm

Vậy x = 2 , x = 3

MIGHFHF
11 tháng 11 2018 lúc 15:56

Đặt 4 - x = a và x - 2 = b thì a + b = 2
Mà theo đề bài : a^5 + b^5 = 32
<=> (a^3 + b^3)(a^2 + b^2) - a^2b^2(a + b) = 32
<=> [(a + b)^3 - 3ab(a + b)].[(a + b)^2 - 2ab] - a^2.b^2.(a + b) = 32
<=> (8 - 6ab)(4 - 2ab) - 2(ab)^2 = 32
<=> 12(ab)^2 - 40(ab) + 32 = 32
<=> 4ab(3ab - 10) = 0
=> ab = 0 hoặc ab = 10/3
* Nếu ab = 0 thì a và b sẽ là nghiệm của pt : x^2 - 2x = 0 => x = 0 hoặc x = 2
=> (a ; b) = (0 ; 2) v (2 ; 0)
=> x = 4 hoặc x = 2
* Nếu ab = 10/3 thì a,b sẽ là nghiệm của pt : x^2 - 2x + 10/3 = 0 (Phương trình vô nghiệm)
S = {2 ; 4}

Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 2 2022 lúc 15:08

a: =>x-3/4=1/6-1/2=1/6-3/6=-2/6=-1/3

=>x=-1/3+3/4=-4/12+9/12=5/12

b: =>x(1/2-5/6)=7/2

=>-1/3x=7/2

hay x=-21/2

c: (4-x)(3x+5)=0

=>4-x=0 hoặc 3x+5=0

=>x=4 hoặc x=-5/3

d: x/16=50/32

=>x/16=25/16

hay x=25

e: =>2x-3=-1/4-3/2=-1/4-6/4=-7/4

=>2x=-7/4+3=5/4

hay x=5/8

Nguyễn Trần Linh Na
Xem chi tiết
Edogawa Conan
21 tháng 7 2019 lúc 15:34

\(\frac{2^{4-x}}{16^5}=32^6\)

=> \(\frac{2^{4-x}}{\left(2^4\right)^5}=\left(2^5\right)^6\)

=> \(\frac{2^{4-x}}{2^{20}}=2^{30}\)

=> \(2^{4-x}=2^{30}.2^{20}\)

=> \(2^{4-x}=2^{50}\)

=> 4  - x = 50

=> x = 4 - 50 = -46

\(\frac{3^{2x+3}}{9^3}=9^{14}\)

=> \(\frac{3^{2x+3}}{\left(3^2\right)^3}=\left(3^2\right)^{14}\)

=> \(\frac{3^{2x+3}}{3^6}=3^{28}\)

=> \(3^{2x+3}=3^{28}.3^6\)

=> \(3^{2x+3}=3^{34}\)

=> 2x + 3 = 34

=> 2x = 34 - 3

=> 2x = 31

=> x = 31/2

Nguyễn Thanh Hải
Xem chi tiết
Rin Huỳnh
23 tháng 4 2023 lúc 10:20

1D; 2B; 3D

Đồ Ngốc
Xem chi tiết
Cô nàng bí ẩn
Xem chi tiết
Toyama Kazuha
13 tháng 8 2018 lúc 19:59

a) \(\left(3x-2\right)^2-\left(3x-5\right)\left(3x+2\right)=11\)
\(\Leftrightarrow\left(9x^2-12x+4\right)-\left(9x^2+6x-15x-10\right)=11\)
\(\Leftrightarrow9x^2-12x+4-9x^2-6x+15x+10=11\)
\(\Leftrightarrow-3x+3=0\)
\(\Leftrightarrow-3x=-3\)
\(\Leftrightarrow x=1\)
Vậy \(S=\left\{1\right\}\)

b) \(\left(4x-3\right)^2-\left(4x-5\right)\left(4x+5\right)=32\)
\(\Leftrightarrow\left(16x^2-24x+9\right)-\left(16x^2-25\right)=32\)
\(\Leftrightarrow16x^2-24x+9-16x^2+25=32\)
\(\Leftrightarrow-24x+2=0\)
\(\Leftrightarrow-24x=-2\)
\(\Leftrightarrow x=\dfrac{1}{12}\)
Vậy \(S=\left\{\dfrac{1}{12}\right\}\)

c) \(\left(5x-2\right)^2-\left(5x+3\right)\left(5x-5\right)=1\)
\(\Leftrightarrow\left(25x^2-20x+4\right)-\left(25x^2-25x+15x-15\right)=1\)
\(\Leftrightarrow25x^2-20x+4-25x^2+25x-15x+15=1\)
\(\Leftrightarrow-10x+18=0\)
\(\Leftrightarrow-10x=-18\)
\(\Leftrightarrow x=\dfrac{9}{5}\)
Vậy \(S=\left\{\dfrac{9}{5}\right\}\)

d) \(\left(x-4\right)^2-\left(x-7\right)\left(2x-3\right)=5-x^2\)
\(\Leftrightarrow\left(x^2-8x+16\right)-\left(2x^2-3x-14x+21\right)=5-x^2\)
\(\Leftrightarrow x^2-8x+16-2x^2+3x+14x-21=5-x^2\)
\(\Leftrightarrow x^2-8x+16-2x^2+3x+14x-21-5+x^2=0\)
\(\Leftrightarrow9x-10=0\)
\(\Leftrightarrow9x=10\)
\(\Leftrightarrow x=\dfrac{10}{9}\)
Vậy \(S=\left\{\dfrac{10}{9}\right\}\)