Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Công chúa thủy tề
Xem chi tiết
TuiTenQuynh
26 tháng 1 2019 lúc 23:10

\(\frac{x+1}{2019}+\frac{x+2}{2018}=\frac{x+2017}{3}+\frac{x+2016}{4}\)

\(\Leftrightarrow\frac{x+1}{2019}+1+\frac{x+2}{2018}+1=\frac{x+2017}{3}+1+\frac{x+2016}{4}+1\)

\(\Leftrightarrow\frac{x+2020}{2019}+\frac{x+2020}{2018}-\frac{x+2020}{3}-\frac{x+2020}{4}=0\)

\(\Leftrightarrow\left(x+2020\right).\left(\frac{1}{2019}+\frac{1}{2018}-\frac{1}{3}-\frac{1}{4}\right)=0\)

Mà \(\left(\frac{1}{2019}+\frac{1}{2018}-\frac{1}{3}-\frac{1}{4}\right)\ne0\)

\(\Rightarrow x+2020=0\Leftrightarrow x=-2020\)

Vậy...

Thỏ bông
Xem chi tiết
Nguyễn Việt Lâm
31 tháng 1 2019 lúc 22:06

\(\dfrac{2-x}{2017}+1=\dfrac{x-1}{2018}-1+1-\dfrac{x}{2019}\)

\(\Leftrightarrow\dfrac{2019-x}{2017}=\dfrac{x-2019}{2018}+\dfrac{2019-x}{2019}\)

\(\Leftrightarrow\dfrac{2019-x}{2017}+\dfrac{2019-x}{2018}-\dfrac{2019-x}{2019}=0\)

\(\Leftrightarrow\left(2019-x\right)\left(\dfrac{1}{2017}+\dfrac{1}{2018}-\dfrac{1}{2019}\right)=0\)

\(\Leftrightarrow2019-x=0\) (do \(\dfrac{1}{2017}>\dfrac{1}{2019}\Rightarrow\dfrac{1}{2017}+\dfrac{1}{2018}-\dfrac{1}{2019}>0\))

\(\Rightarrow x=2019\)

Măm Măm
Xem chi tiết
Trần Thị Thu Nga
27 tháng 1 2019 lúc 13:14

\(\dfrac{x+1}{2019}+\dfrac{x+2}{2018}=\dfrac{x+2017}{3}+\dfrac{x+2016}{4}\)

\(\Leftrightarrow\left(\dfrac{x+1}{2019}+1\right)+\left(\dfrac{x+2}{2018}+1\right)=\left(\dfrac{x+2017}{3}+1\right)+\left(\dfrac{x+2016}{4}+1\right)\)

\(\Leftrightarrow\dfrac{x+2020}{2019}+\dfrac{x+2020}{2018}-\dfrac{x+2020}{3}-\dfrac{x+2020}{4}=0\)

\(\Leftrightarrow\left(x+2020\right)\left(\dfrac{1}{2019}+\dfrac{1}{2018}-\dfrac{1}{3}-\dfrac{1}{4}\right)=0\)

\(\Leftrightarrow x+2020=0\) ( do \(\dfrac{1}{2019}+\dfrac{1}{2018}-\dfrac{1}{3}-\dfrac{1}{4}\ne0\))

\(\Leftrightarrow x=-2020\)

Vậy phương trình có tập nghiệm S = \(\left\{-2020\right\}\)

ỵyjfdfj
Xem chi tiết
Lấp La Lấp Lánh
23 tháng 9 2021 lúc 17:12

\(\Leftrightarrow\left(\dfrac{x+1}{2019}+1\right)+\left(\dfrac{x+2}{2018}+1\right)=\left(\dfrac{x+3}{2017}+1\right)+\left(\dfrac{x+4}{2016}+1\right)\)

\(\Leftrightarrow\dfrac{x+2020}{2019}+\dfrac{x+2020}{2018}-\dfrac{x+2020}{2017}-\dfrac{x+2020}{2016}=0\)

\(\Leftrightarrow\left(x+2020\right)\left(\dfrac{1}{2019}+\dfrac{1}{2018}-\dfrac{1}{2017}-\dfrac{1}{2016}\right)=0\)

\(\Leftrightarrow x=-2020\)(do \(\dfrac{1}{2019}+\dfrac{1}{2018}-\dfrac{1}{2017}-\dfrac{1}{2016}\ne0\))

Vũ tũm tĩm
23 tháng 9 2021 lúc 17:12

Cộng 1 vào mỗi số hạng là ra

Nguyễn Hoàng Minh
23 tháng 9 2021 lúc 17:12

\(\Rightarrow\left(\dfrac{x+1}{2019}+1\right)+\left(\dfrac{x+2}{2018}+1\right)=\left(\dfrac{x+3}{2017}+1\right)+\left(\dfrac{x+4}{2016}+1\right)\\ \Rightarrow\dfrac{x+2020}{2019}+\dfrac{x+2020}{2018}=\dfrac{x+2020}{2017}+\dfrac{x+2020}{2016}\\ \Rightarrow\left(x+2020\right)\left(\dfrac{1}{2019}+\dfrac{1}{2018}-\dfrac{1}{2017}-\dfrac{1}{2016}\right)=0\\ \Rightarrow x=-2020\)

Trần Bảo Vy
Xem chi tiết
Aki Tsuki
11 tháng 9 2018 lúc 16:01

\(\dfrac{x-1}{2019}+\dfrac{x-2}{2018}=\dfrac{x-3}{2017}+\dfrac{x-4}{2016}\)

\(\Leftrightarrow\left(\dfrac{x-1}{2019}-1\right)+\left(\dfrac{x-2}{2018}-1\right)=\left(\dfrac{x-3}{2017}-1\right)+\left(\dfrac{x-4}{2016}-1\right)\)

\(\Leftrightarrow\dfrac{x-2020}{2019}+\dfrac{x-2020}{2018}-\dfrac{x-2020}{2017}-\dfrac{x-2010}{2016}=0\)

\(\Leftrightarrow\left(x-2020\right)\left(\dfrac{1}{2019}+\dfrac{1}{2018}-\dfrac{1}{2017}-\dfrac{1}{2016}\right)=0\)

\(\Rightarrow x-2020=0\Leftrightarrow x=2020\)

vậy.......

Nguyễn Võ Nhiệt My
Xem chi tiết
Không Tên
1 tháng 3 2017 lúc 19:30

\(\frac{x-1}{2017}+\frac{x-2}{2018}+\frac{x-3}{2019}=-3\)

\(\Leftrightarrow\frac{x-1}{2017}+1+\frac{x-2}{2018}+1+\frac{x-3}{2019}+1=0\)

\(\Leftrightarrow\frac{x+2016}{2017}+\frac{x+2016}{2018}+\frac{x+2016}{2019}=0\)

\(\left(x+2016\right)\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}\right)=0\)

\(\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}\right)\ne0\) nên

x+2016=0

\(\Leftrightarrow\)x=-2016

nito
Xem chi tiết
Ng Ngọc
13 tháng 8 2023 lúc 15:01

\(\dfrac{x+1}{3}+\dfrac{x+1}{4}+\dfrac{x+1}{5}=\dfrac{x+1}{6}\)

\(\dfrac{x+1}{3}+\dfrac{x+1}{4}+\dfrac{x+1}{5}-\dfrac{x+1}{6}=0\)

\(\left(x+1\right)\left(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}\right)=0\)

\(\)vì \(\dfrac{1}{3}>\dfrac{1}{6};\dfrac{1}{4}>\dfrac{1}{6};\dfrac{1}{5}>\dfrac{1}{6}=>\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}>0\)

\(=>x+1=0\)

\(=>x=-1\)

b,

\(\dfrac{x+1}{2020}+\dfrac{x+2}{2019}=\dfrac{x+3}{2018}+\dfrac{x+4}{2017}\)

\(\left(\dfrac{x+1}{2020}+1\right)+\left(\dfrac{x+2}{2019}+1\right)=\left(\dfrac{x+3}{2018}+1\right)+\left(\dfrac{x+4}{2017}+1\right)\)

\(\dfrac{x+2021}{2020}+\dfrac{x+2021}{2019}=\dfrac{x+2021}{2018}+\dfrac{x+2021}{2017}\)

\(=>\dfrac{x+2021}{2020}+\dfrac{x+2021}{2019}-\dfrac{x+2021}{2018}-\dfrac{x+2021}{2017}=0\)

\(=>\left(x+2021\right)\left(\dfrac{1}{2020}+\dfrac{1}{2019}-\dfrac{1}{2018}-\dfrac{1}{2017}\right)=0\)

Vì \(\dfrac{1}{2020}< \dfrac{1}{2018};\dfrac{1}{2019}< \dfrac{1}{2017}=>\dfrac{1}{2020}+\dfrac{1}{2019}-\dfrac{1}{2018}-\dfrac{1}{2017}< 0\)

\(=>x+2021=0\)

\(=>x=-2021\)

 

c,

\(\dfrac{x+2}{327}+\dfrac{x+3}{326}+\dfrac{x+4}{325}+\dfrac{x+5}{324}+\dfrac{x+349}{5}=0\)

\(\left(\dfrac{x+2}{327}+1\right)+\left(\dfrac{x+3}{326}+1\right)+\left(\dfrac{x+4}{325}+1\right)+\left(\dfrac{x+5}{324}+1\right)+\left(\dfrac{x+349}{5}-4\right)=0\)

\(\dfrac{x+329}{327}+\dfrac{x+329}{326}+\dfrac{x+329}{325}+\dfrac{x+329}{324}+\dfrac{x+329}{5}=0\)

\(=>\left(x+329\right)\left(\dfrac{1}{327}+\dfrac{1}{326}+\dfrac{1}{325}+\dfrac{1}{324}+\dfrac{1}{5}\right)=0\)

Vì \(\dfrac{1}{327}+\dfrac{1}{326}+\dfrac{1}{325}+\dfrac{1}{324}+\dfrac{1}{5}>0\)

\(=>x+329=0\)

\(=>x=-329\)

Võ Lan Nhi
Xem chi tiết
Shinichi Kudo
4 tháng 3 2018 lúc 16:43

a) ĐKXĐ: \(x\ne\pm2\)

Ta có: \(\dfrac{x}{x+2}=\dfrac{x^2+4}{x^2-4}\)

\(\Leftrightarrow\dfrac{x}{x+2}=\dfrac{x^2+4}{\left(x+2\right)\left(x-2\right)}\)

\(\Leftrightarrow\dfrac{x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{x^2+4}{\left(x+2\right)\left(x-2\right)}\)

\(\Rightarrow x\left(x-2\right)=x^2+4\)

\(\Leftrightarrow x^2-2x=x^2+4\)

\(\Leftrightarrow-2x=4\Leftrightarrow x=-2\)(KTMĐK)

Vậy phương trình vô nghiệm

Shinichi Kudo
4 tháng 3 2018 lúc 16:50

b) ĐKXĐ: \(x\ne3;x\ne-1\)

Ta có: \(\dfrac{x}{2x-6}+\dfrac{x}{2x+2}+\dfrac{2x}{\left(x+1\right)\left(3-x\right)}=0\)

\(\Leftrightarrow\dfrac{x}{2\left(x-3\right)}+\dfrac{x}{2\left(x+1\right)}-\dfrac{2x}{\left(x+1\right)\left(x-3\right)}=0\)

\(\Leftrightarrow\dfrac{x\left(x+1\right)}{2\left(x-3\right)\left(x+1\right)}+\dfrac{x\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}-\dfrac{2.2x}{2\left(x+1\right)\left(x-3\right)}=0\)

\(\Rightarrow x\left(x+1\right)+x\left(x-3\right)-2.2x=0\)

\(\Leftrightarrow x^2+x+x^2-3x-4x=0\)

\(\Leftrightarrow2x^2-6x=0\)

\(\Leftrightarrow2x\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(TMĐK\right)\\x=3\left(KTMĐK\right)\end{matrix}\right.\)

Vậy phương trình có nghiệm là \(x=0\)

Shinichi Kudo
4 tháng 3 2018 lúc 17:06

c) Ta có: \(\dfrac{2-x}{2017}-1=\dfrac{1-x}{2018}-\dfrac{x}{2019}\)

\(\Leftrightarrow\dfrac{2-x}{2017}+1=\dfrac{1-x}{2018}+1-\dfrac{x}{2019}+1\)

\(\Leftrightarrow\dfrac{2-x}{2017}+1=\left(\dfrac{1-x}{2018}+1\right)-\left(\dfrac{x}{2019}-1\right)\)

\(\Leftrightarrow\dfrac{2-x+2017}{2017}=\dfrac{1-x+2018}{2018}-\dfrac{x-2019}{2019}\)

\(\Leftrightarrow\dfrac{2019-x}{2017}=\dfrac{2019-x}{2018}+\dfrac{2019-x}{2019}\)

\(\Leftrightarrow\dfrac{2019-x}{2017}-\dfrac{2019-x}{2018}-\dfrac{2019-x}{2019}=0\)

\(\Leftrightarrow\left(2019-x\right)\left(\dfrac{1}{2017}-\dfrac{1}{2018}-\dfrac{1}{2019}\right)=0\)

\(\Leftrightarrow2019-x=0\)(vì \(\dfrac{1}{2017}-\dfrac{1}{2018}-\dfrac{1}{2019}\ne0\))

\(\Leftrightarrow x=2019\)

Vậy nghiệm của phương trình là \(x=2019\)

Thanh Thúy
Xem chi tiết
Phạm Nguyễn Tất Đạt
10 tháng 3 2018 lúc 15:46

Sửa đề: \(\dfrac{x-4}{2019}+\dfrac{x-3}{2018}=\dfrac{x-2}{2017}+\dfrac{x-1}{2016}\)

\(\Leftrightarrow\dfrac{x-4}{2019}+1+\dfrac{x-3}{2018}+1=\dfrac{x-2}{2017}+1+\dfrac{x-1}{2016}+1\)

\(\Leftrightarrow\dfrac{x+2015}{2019}+\dfrac{x+2015}{2018}=\dfrac{x+2015}{2017}+\dfrac{x+2015}{2016}\)

\(\Leftrightarrow\left(x+2015\right)\left(\dfrac{1}{2019}+\dfrac{1}{2018}-\dfrac{1}{2017}-\dfrac{1}{2016}\right)=0\)

\(\Leftrightarrow x=-2015\)\(\left(\dfrac{1}{2019}+\dfrac{1}{2018}-\dfrac{1}{2017}-\dfrac{1}{2016}\right)\ne0\)