Những câu hỏi liên quan
Andromeda Galaxy
Xem chi tiết
Akai Haruma
5 tháng 1 2018 lúc 0:37

Lời giải:

a)

Theo bất đẳng thức AM-GM ta có:

\(ab(a+b)+bc(b+c)+ac(c+a)\)

\(=a^2b+ab^2+b^2c+bc^2+c^2a+ca^2\geq 6\sqrt[6]{a^2b.ab^2.b^2c.bc^2.c^2a.ca^2}\)

\(\Leftrightarrow ab(a+b)+bc(b+c)+ca(c+a)\geq 6abc\)

\(\Leftrightarrow ab(a+b-2c)+bc(b+c-2a)+ca(c+a-2b)\geq 0\)

Ta có đpcm.

Dấu bằng xảy ra khi \(a=b=c\)

b) Áp dụng BĐT Cauchy-Schwarz:

\(\text{VT}=\frac{a^2}{ab+ac-a^2}+\frac{b^2}{ab+bc-b^2}+\frac{c^2}{ca+cb-c^2}\)

\(\geq \frac{(a+b+c)^2}{ab+ac-a^2+ab+bc-b^2+ca+cb-c^2}\)

\(\Leftrightarrow \text{VT}\geq \frac{(a+b+c)^2}{2(ab+bc+ac)-(a^2+b^2+c^2)}\)

Vì $a,b,c$ là độ dài ba cạnh tam giác nên

\(a(b+c-a)+b(a+c-b)+c(a+b-c)>0\)

hay \(2(ab+bc+ac)-(a^2+b^2+c^2)>0\)

Mặt khác theo BĐT AM-GM ta có:

\(a^2+b^2+c^2\geq ab+bc+ac\Rightarrow 2(ab+bc+ac)-(a^2+b^2+c^2)\leq ab+bc+ac\)

\(\Rightarrow \text{VT}\geq \frac{(a+b+c)^2}{ab+bc+ac}=\frac{a^2+b^2+c^2+2(ab+bc+ac)}{ab+bc+ac}\geq \frac{3(ab+bc+ac)}{ab+bc+ac}=3\)

Vậy ta có đpcm.

Dấu bằng xảy ra khi \(a=b=c\)

Bình luận (0)
ILoveMath
Xem chi tiết
Nguyễn Việt Lâm
17 tháng 1 2022 lúc 22:21

a.

\(\sum\dfrac{ab}{a+c+b+c}\le\dfrac{1}{4}\sum\left(\dfrac{ab}{a+c}+\dfrac{ab}{b+c}\right)=\dfrac{a+b+c}{4}\)

2.

\(\dfrac{ab}{a+3b+2c}=\dfrac{ab}{a+b+2c+2b}\le\dfrac{ab}{9}\left(\dfrac{4}{a+b+2c}+\dfrac{1}{2b}\right)=4.\dfrac{ab}{a+b+2c}+\dfrac{a}{18}\)

Quay lại câu a

Bình luận (2)
Nguyễn Hoàng Minh
17 tháng 1 2022 lúc 22:23

\(b,\dfrac{ab}{a+3b+2c}=\left(\dfrac{1}{9}ab\right)\cdot\dfrac{9}{\left(a+c\right)+\left(b+c\right)+2b}\le\left(\dfrac{1}{9}ab\right)\cdot\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}+\dfrac{1}{2b}\right)=\dfrac{1}{9}\cdot\left(\dfrac{ab}{a+b}+\dfrac{ab}{b+c}+\dfrac{a}{2}\right)\)

Cmtt: \(\dfrac{bc}{b+3c+2a}\le\dfrac{1}{9}\cdot\left(\dfrac{bc}{a+b}+\dfrac{bc}{a+b}+\dfrac{b}{2}\right);\dfrac{ca}{c+3a+2b}\le\dfrac{1}{9}\cdot\left(\dfrac{ca}{b+c}+\dfrac{ca}{a+b}+\dfrac{c}{2}\right)\)

\(\Rightarrow VT\le\dfrac{1}{9}\left(\dfrac{bc+ca}{a+b}+\dfrac{ab+ac}{b+c}+\dfrac{ab+bc}{a+c}+\dfrac{a+b+c}{2}\right)\\ \le\dfrac{1}{9}\left(a+b+c+\dfrac{a+b+c}{2}\right)=\dfrac{1}{9}\cdot\dfrac{3}{2}\left(a+b+c\right)=\dfrac{a+b+c}{6}\)

Dấu $"="$ khi $a=b=c$

Bình luận (0)
Nguyễn Hồng Phúc
Xem chi tiết
Gallavich
Xem chi tiết
Britney M. Carey
Xem chi tiết
Trần Hoàng Đạt
Xem chi tiết
Mysterious Person
8 tháng 12 2018 lúc 21:16

Câu hỏi t/tự

Bình luận (1)
Big City Boy
Xem chi tiết
missing you =
14 tháng 10 2021 lúc 20:02

\(A=\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}+\dfrac{1}{c+a-b}\)\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}\ge\dfrac{4}{a+b-c+b+c-a}\ge\dfrac{4}{2b}\ge\dfrac{2}{b}\\\dfrac{1}{b+c-a}+\dfrac{1}{c+a-b}\ge\dfrac{4}{b+c-a+c+a-b}\ge\dfrac{4}{2c}\ge\dfrac{2}{c}\\\dfrac{1}{a+b-c}+\dfrac{1}{c+a-b}\ge\dfrac{4}{a+b-c+c+a-b}\ge\dfrac{4}{2a}\ge\dfrac{2}{a}\end{matrix}\right.\)

\(\Rightarrow2\left(\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}+\dfrac{1}{c+a-b}\right)\ge\left(\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\right)\ge2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(\Rightarrow A\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) \(dấu"="xảy\) \(ra\Leftrightarrow a=b=c\)

Bình luận (0)
:vvv
Xem chi tiết
Yeutoanhoc
23 tháng 6 2021 lúc 16:55

Áp dụng bđt cosi schwart ta có:

`VT>=(a+b+c)^2/(a+b+c+sqrt{ab}+sqrt{bc}+sqrt{ca})`

Dễ thấy `sqrt{ab}+sqrt{bc}+sqrt{ca}<a+b+c`

`=>VT>=(a+b+c)^2/(2(a+b+c))=(a+b+c)/2=3`

Dấu "=" `<=>a=b=c=1.`

Bình luận (10)
Britney M. Carey
Xem chi tiết