Nếu \(\sqrt{162+72\sqrt{2}}=a+b\sqrt{2}\left(a,b\in Z\right) .Tính a+b=?\)
Cho \(P=\left(\dfrac{3\sqrt{a}}{a+\sqrt{ab}+b}-\dfrac{3a}{a\sqrt{a}-b\sqrt{b}}+\dfrac{1}{\sqrt{a}-\sqrt{b}}\right):\left(\dfrac{\left(a-1\right)\left(\sqrt{a}-\sqrt{b}\right)}{2a+2\sqrt{ab}+2b}\right)\)
Tìm \(a\in Z\) để \(P\in Z\)
\(P=\left(\dfrac{3\sqrt{a}}{a+\sqrt{ab}+\sqrt{b}}-\dfrac{3a}{a\sqrt{a}-b\sqrt{b}}+\dfrac{1}{\sqrt{a}-\sqrt{b}}\right):\dfrac{\left(a-1\right)\left(\sqrt{a}-\sqrt{b}\right)}{2a+2\sqrt{ab}+2b}\left(đk:a\ne b,a\ge0,b\ge0\right)\)
\(=\dfrac{3a-3\sqrt{ab}-3a+a+\sqrt{ab}+b}{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+\sqrt{b}\right)}.\dfrac{2\left(a+\sqrt{ab}+b\right)}{\left(a-1\right)\left(\sqrt{a}-\sqrt{b}\right)}\)
\(=\dfrac{a-2\sqrt{ab}+b}{\sqrt{a}-\sqrt{b}}.\dfrac{2}{\left(a-1\right)\left(\sqrt{a}-\sqrt{b}\right)}=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2.2}{\left(\sqrt{a}-\sqrt{b}\right)^2\left(a-1\right)}=\dfrac{2}{a-1}\in Z\)
\(\Rightarrow a-1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)
Do \(a\ge0\)
\(\Rightarrow a\in\left\{0;2;3\right\}\)
Ta có: \(P=\left(\dfrac{3\sqrt{a}}{a+\sqrt{ab}+b}-\dfrac{3a}{a\sqrt{a}-b\sqrt{b}}+\dfrac{1}{\sqrt{a}-\sqrt{b}}\right):\left(\dfrac{\left(a-1\right)\left(\sqrt{a}-\sqrt{b}\right)}{2a+2\sqrt{ab}+2b}\right)\)
\(=\dfrac{3a-3\sqrt{ab}-3a+a+\sqrt{ab}+b}{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}\cdot\dfrac{2\left(a+\sqrt{ab}+b\right)}{\left(a-1\right)\left(\sqrt{a}-\sqrt{b}\right)}\)
\(=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(\sqrt{a}-\sqrt{b}\right)^2}\cdot\dfrac{2}{a-1}\)
\(=\dfrac{2}{a-1}\)
Để P là số nguyên thì \(a-1\in\left\{1;-1;2;-2\right\}\)
hay \(a\in\left\{2;0;3\right\}\)
Với mọi a, b, c, x, y, z \(\in\) R, chứng minh : \(\sqrt{a^2+x^2}+\sqrt{b^2+y^2}+\sqrt{c^2+z^2}\ge\sqrt{\left(a+b+c\right)^2+\left(x+y+z\right)^2}\)
Ta sẽ chứng minh:
\(\sqrt{a^2+x^2}+\sqrt{b^2+y^2}\ge\sqrt{\left(a+b\right)^2+\left(x+y\right)^2}\)
Thật vậy, bình phương 2 vế, BĐT tương đương:
\(a^2+x^2+b^2+y^2+2\sqrt{a^2b^2+x^2y^2+a^2y^2+b^2x^2}\ge a^2+b^2+x^2+y^2+2ab+2xy\)
\(\Leftrightarrow\sqrt{a^2b^2+x^2y^2+a^2y^2+b^2x^2}\ge ab+xy\)
\(\Leftrightarrow a^2b^2+x^2y^2+a^2y^2+b^2x^2\ge a^2b^2+x^2y^2+2abxy\)
\(\Leftrightarrow a^2y^2+b^2x^2-2abxy\ge0\)
\(\Leftrightarrow\left(ay-bx\right)^2\ge0\) (luôn đúng)
Áp dụng:
\(VT=\sqrt{a^2+x^2}+\sqrt{b^2+y^2}+\sqrt{c^2+z^2}\)
\(VT\ge\sqrt{\left(a+b\right)^2+\left(x+y\right)^2}+\sqrt{c^2+z^2}\ge\sqrt{\left(a+b+c\right)^2+\left(x+y+z\right)^2}\) (đpcm)
Biết \(lim\dfrac{\sqrt{2.4^n+1}-2^n}{\sqrt{2.4^n+1}+2^n}=a+b\sqrt{2}\left(a,b\in Z\right)\). Tính \(a^3+b^3\)
\(\lim\limits\dfrac{\sqrt{2\cdot4^n+1}-2^n}{\sqrt{2\cdot4^n+1}+2^n}\)
\(=\lim\limits\dfrac{2^n\cdot\sqrt{2+\dfrac{1}{4^n}}-2^n}{2^n\cdot\sqrt{2+\dfrac{1}{4^n}}+2^n}\)
\(=\lim\limits\dfrac{\sqrt{2+\dfrac{1}{4^n}}-1}{\sqrt{2+\dfrac{1}{4^n}}+1}=\dfrac{\sqrt{2}-1}{\sqrt{2}+1}\)
\(=\dfrac{\left(\sqrt{2}-1\right)\left(\sqrt{2}-1\right)}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}=\dfrac{3-2\sqrt{2}}{2-1}=3-2\sqrt{2}\)
=>a=3; b=-2
\(a^3+b^3=3^3+\left(-2\right)^3=27-8=19\)
\(\sqrt{a}+\sqrt{b}=\sqrt{2019}\left(a,b\in Z\right).\) Tính \(a,b?\)
\(\sqrt{a}+\sqrt{b}=\sqrt{2019}\)
\(\Leftrightarrow\sqrt{a}=\sqrt{2019}-\sqrt{b}\)\(\Leftrightarrow\left(\sqrt{a}\right)^2=\left(\sqrt{2019}-\sqrt{b}\right)^2\)
\(\Leftrightarrow a=2019-2.\sqrt{2019b}+b\)
Vì a,b,2019 ∈ Z nên \(2.\sqrt{2019b}\in Z\Leftrightarrow\sqrt{2019b}\in Z\)
<=> 2019b là số chính phương <=> b có dạng 2019k^2(k ∈ N).Do đó, a có dạng 2019m^2(m ∈ N)
Thay vào , ta có \(\sqrt{2019m^2}+\sqrt{2019k^2}=\sqrt{2019}\)
\(\Leftrightarrow m.\sqrt{2019}+k.\sqrt{2019}=\sqrt{2019}\)
\(\Leftrightarrow\sqrt{2019}\left(k+m\right)=\sqrt{2019}\)\(\Leftrightarrow k+m=1\)
Mà k,m ∈ N nên xảy ra 2 TH: k = 0, m = 1 hoặc k = 1,m = 0
-Xét k = 0, m = 1, ta có a = 2019,b = 0
-Xét k = 1,m = 0, ta có a = 0, b = 2019
Vậy...
Nếu , với , thì ....
\(\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}-\sqrt{\left(1-\sqrt{3}\right)^2}\)
\(=\sqrt{2}-\sqrt{3}-1-\sqrt{3}\)
\(=\sqrt{2}-1-2\sqrt{3}=a+b\sqrt{2}+c\sqrt{3}\) (*)
Nhìn vào (*) ta dễ dàng thấy
\(-2\sqrt{3}=c\sqrt{3}\rightarrow c=-2\)
\(\sqrt{2}=b\sqrt{2}\rightarrow b=1\)
Và a=-1.Suy ra a+b+c=(-2)+1+(-1)=-2
Nếu \(\sqrt{162-72\sqrt{2}}=a+b\sqrt{2}\) với a;b là các số nguyên thì a+b=
Rút gọn các biểu thức sau:
a) \(\sqrt{4\frac{1}{2}}-\sqrt{32}+\sqrt{72}-\sqrt{162}\)
b) \(\left(\frac{1}{\sqrt{5}-3}-\frac{1}{\sqrt{5}+3}\right)\times\frac{3-\sqrt{3}}{1-\sqrt{3}}\)
c) \(\left(1-\frac{4\sqrt{a}}{a-1}+\frac{1}{\sqrt{a}-1}\right):\frac{a-2\sqrt{a}}{a-1}\)
a) \(=\sqrt{\frac{9}{2}}-\sqrt{16.2}+\sqrt{36.2}-\sqrt{81.2}\)
\(=\frac{3}{2}\sqrt{2}-4\sqrt{2}+6\sqrt{2}-9\sqrt{2}\)
\(=\left(\frac{3}{2}-4+6-9\right)\sqrt{2}=\frac{-11}{2}\sqrt{2}\)
b) \(=\frac{\sqrt{5}+3-\sqrt{5}+3}{\left(\sqrt{5}-3\right)\left(\sqrt{5}+3\right)}.\frac{\sqrt{3}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}\)
\(=\frac{6}{5-9}.\left(-\sqrt{3}\right)=\frac{3}{2}\sqrt{3}\)
c) \(=\left(\frac{a-1-4\sqrt{a}+\sqrt{a}+1}{a-1}\right):\frac{\sqrt{a}\left(\sqrt{a}-2\right)}{a-1}\)
\(=\frac{a-3\sqrt{a}}{a-1}.\frac{a-1}{\sqrt{a}\left(\sqrt{a}-2\right)}\)
\(=\frac{\sqrt{a}\left(\sqrt{a}-3\right)}{\sqrt{a}\left(\sqrt{a}-2\right)}=\frac{\sqrt{a}-3}{\sqrt{a}-2}\)
\(choP=\left(1-\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}+\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)....a,tìm.x\in Z.để.P\in Z...b,tìm.x\in z.để.P\in z...c,tìm.x.để.\left|P\right|=P...d,tìm.x.để.\sqrt{P}>P\)
Cho \(B=\left(1+\dfrac{\sqrt{a}}{a+1}\right):\left(\dfrac{1}{\sqrt{a}+1}-\dfrac{2\sqrt{a}}{a\sqrt{a}+\sqrt{a}-a-1}\right)\)
a, Rút gọn B
b, Tìm a để B<1
c, Cho \(a=19-8\sqrt{3}\). Tính B
d, Tìm a ∈ Z để b ∈ Z
e, Tìm giá trị lớn nhất của M