\(\lim\limits\dfrac{\sqrt{2\cdot4^n+1}-2^n}{\sqrt{2\cdot4^n+1}+2^n}\)
\(=\lim\limits\dfrac{2^n\cdot\sqrt{2+\dfrac{1}{4^n}}-2^n}{2^n\cdot\sqrt{2+\dfrac{1}{4^n}}+2^n}\)
\(=\lim\limits\dfrac{\sqrt{2+\dfrac{1}{4^n}}-1}{\sqrt{2+\dfrac{1}{4^n}}+1}=\dfrac{\sqrt{2}-1}{\sqrt{2}+1}\)
\(=\dfrac{\left(\sqrt{2}-1\right)\left(\sqrt{2}-1\right)}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}=\dfrac{3-2\sqrt{2}}{2-1}=3-2\sqrt{2}\)
=>a=3; b=-2
\(a^3+b^3=3^3+\left(-2\right)^3=27-8=19\)