Chương 4: GIỚI HẠN

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
camcon

Biết \(\lim\limits_{x\rightarrow-1}\dfrac{\sqrt{13x^2+2x+5}-\sqrt[3]{81x^2+ax+1}}{x^2+2x+1}=\dfrac{b}{c}\) Với \(a\in R;b\in Z,c\in N^{\text{*}}\) . Tính a+b+c

GIới hạn đã cho hữu hạn

\(\Rightarrow\sqrt[3]{13x^2+2x+5}-\sqrt[3]{81x^2+ax+1}=0\) có nghiệm \(x=-1\)

\(\Rightarrow a=18\)

Khi đó:

\(\lim\limits_{x\rightarrow-1}\dfrac{\sqrt{13x^2+2x+5}-\sqrt[3]{81x^2+18x+1}}{\left(x+1\right)^2}\)

\(=\lim\limits_{x\rightarrow-1}\dfrac{\left(\sqrt[]{13x^2+2x+5}-\left(1-3x\right)\right)+\left(1-3x-\sqrt[3]{81x^3+18x+1}\right)}{\left(x+1\right)^2}\)

\(=...=\dfrac{17}{16}\)


Các câu hỏi tương tự
camcon
Xem chi tiết
Trần Hà Linh
Xem chi tiết
Trần Minh
Xem chi tiết
Trần Hà Linh
Xem chi tiết
Hoàng Anh
Xem chi tiết
ánh tuyết nguyễn
Xem chi tiết
Trần Hà Linh
Xem chi tiết
Hoàng Anh
Xem chi tiết
Hoàng Anh
Xem chi tiết