Tìm các chữ số a,b sao cho a - b = 2 và \(\overline{96ab}\) \(_⋮\) 9
Tìm các chữ số a và b sao cho 96ab chia hết cho 9 và a-b= 4
Tìm các chữ số a và b sao cho 96ab chia hết cho 9 và a-b=4.
=> Vì a, b là các chữ số và a-b=4.
Nên a>b và a thuộc tập hợp { 5; 6; 7; 8; 9}.
b thuộc tập hợp { 1; 2; 3; 4; 5}.
Ta có : 96ab chia hết cho 9 => ( 9+6+a+b) chia hết cho 9.
=> ( 15+a+b) chia hết cho 9.
Nếu a=5 và b=1 thì suy ra: 15+5+1= 21 không chia hết cho 9.
Nếu a=6 và b=2 thì suy ra: 15+6+2= 23 không chia hết cho 9.
Nếu a=7 và b=3 thì suy ra: 15+7+3= 25 không chia hết cho 9.
Nếu a=8 và b=4 thì suy ra: 15+8+4= 27 chia hết cho 9.
Nếu a=9 và b=5 thì suy ra: 15+9+5= 29 không chia hết cho 9.
Vậy a=8 và b=4.
Tìm các chữ số tự nhiên a, b sao cho
a) \(\overline{163a}\) ⋮ 3 và 5 b)\(\overline{712a4b}\) chia hết cho cả 2,3,5,và 9
a) Để \(\overline{163a}\) chia hết cho 5 thì \(a\in\left\{0;5\right\}\)
Mà số đó lại chia hết cho 3 nên: \(1+6+3+a=10+a\) ⋮ 3
Với a = 0 thì 10 + 0 = 10 không chia hết cho 3 (loại)
Với a = 5 thì 10 + 5 = 15 ⋮ 3 (nhận)
Vậy a = 5
b) Để \(\overline{712a4b}\) chia hết cho 2 và 5 thì \(b=0\)
Số đó có dạng \(\overline{712a40}\)
Mà số đó lại chia hết cho 3 và 9 nên: \(7+1+2+a+4+0=14+a\) ⋮ 9
\(14+a=18\Rightarrow a=4\)
Vậy (a;b) = (4;0)
Cho a + c = 9, tìm tập hợp A các số tự nhiên b sao cho \(\overline{abc}+\overline{cba}\) là 1 số có 3 chữ số
A = \(\overline{abc}\) + \(\overline{cba}\)
A = 100a + 10b +c + 100c + 10b + a
A = 100( a +c) + (c+a) + 20b
A = (a+c) (100 +1) + 20b
A = 9.101 + 20b
A = 909 + 20b
Để A là một số có 3 chữ số thì A \(\le\) 999
\(\Leftrightarrow\) 909 + 20b \(\le\) 999
\(\Leftrightarrow\) 20b \(\le\) 90
\(\Leftrightarrow\)b \(\le\) 9/2
\(\Leftrightarrow\) b \(\in\) { 0; 1; 2; 3; 4}
tìm các chữ số a,b sao cho: a-b=6 và 4a7 + 1b5 chia hết cho 9
a - b = 6 <=> a = 6 + b 4a7 và 1b5 có gạch ngang trên đầu:
4a7 <=> 400 + 10a + 7 1b5
<=> 100 + 10b + 5 (400 + 10a + 7) + (100 + 10b + 5) 512 + 10a + 10b
Thay a = 6 + b vào 512 + 60 + 10b + 10b => 572 + 20b
Chia hết cho 9 khi 5+7+2+2+b chia hết cho 9
<=> b = 2 thỏa mãn
=> a = 8 487 + 125
Đáp số: 612
Cho số A=\(\overline{a785b}\).Tìm chữ số a,b sao cho a-b=5 và A chia cho 9 dư 2
Cho số tự nhiên B = \(\overline{57a2b}\), tìm các chữ số a, b sao cho số B chia hết cho cả 2; 3; 5 nhưng không chia hết cho 9
Ta có: \(B⋮2\) và \(B⋮5\)
=>\(B⋮10\)
=>b=0
Ta lại có: \(B⋮3\) => 5+7+a+2+b \(⋮\)3
hay 14+a\(⋮\)3
=> a=1 hoặc a=4 hoặc a=7
Vậy có 3 số thỏa mãn 57120 ; 57420 ; 57720
Tìm các chữ số a và b sao cho \(a-b=4\) và \(\overline{87ab}⋮9\) ?
Để : \(\overline{87ab}⋮9\Rightarrow\left(8+7+a+b\right)⋮9\)
\(\Rightarrow\left(15+a+b\right)⋮9\Rightarrow9+\left(6+a+b\right)⋮9\)
Vì \(9⋮9\Rightarrow6+a+b⋮9\)
\(\Rightarrow a+b=3\) hoặc \(a+b=12\)
Mà : a - b = 4
+) \(\Rightarrow\left\{{}\begin{matrix}a+b=3\\a-b=4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a\in\varnothing\\b\in\varnothing\end{matrix}\right.\)
+) \(\Rightarrow\left\{{}\begin{matrix}a+b=12\\a-b=4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=8\\b=4\end{matrix}\right.\)
Vậy a = 8 ; b = 4 thỏa mãn đề bài
Để \(\overline{87ab}\)\(⋮\) 9 thì ( 8 + 7 + a + b ) sẽ chia hết cho 9
( 8 + 7 + a + b ) = ( 15 + a + b ) = 9 + ( 6 + a + b )
Mà 9 chia hết cho 9 nên ta còn 6 + a + b chia hết cho 9
Để 6 + a + b chia hết cho 9 thì tổng a + b = 3 hoặc 12 ( không thể có số lớn hơn vì 2 số lớn nhất có 1 cs cũng chỉ có tổng là 18 mà 12+9 = 21 , 21>18 nên a+ b = 3 hoặc 12 )
Mà a - b = 4 nên ta có các trường hợp sau :
_Nếu a+ b = 3 thì không thể có a - b = 4 Trường hợp sai
_Nếu a + b = 12 thì :
+) a= 4 hoặc 5 hoặc 6 hoặc 7 hoặc 8 hoặc 9 hoặc ... hoặc 12
+) b= 0 hoặc 1 hoặc 2 hoặc 3 hoặc ... hoặc 8
Mà ta thấy a = 8 , b = 4 là thỏa mãn đầu bài nên a = 8 , b = 4 .
a. Tìm các chữ số a,b biết rằng số \(\overline{a1984b}\) là một bội số của 45.
b. Tìm X \(\in\) N sao cho 3x +2.3x-2 =297
c. Tính A=\(\dfrac{6^{14}+2^{14}.9^8}{12.8^4.3^{12}}\)
b: Ta có: \(3^x+2\cdot3^{x-2}=297\)
\(\Leftrightarrow3^x=297:\dfrac{11}{9}=243\)
hay x=5
a) Tìm số tự nhiên có hai chữ số , biết rằng khi đổi 2 chữ số cho nhau rồi viết thêm số 0 vào bên phải số đó ta được số mới gấp 45 lần số ban đầu
b) Tìm số \(\overline{1a7b}\) sao cho a-b =3 và \(\overline{1a7b}\) chia cho 9 dư 5