Tìm x biết
\(\left(x-\dfrac{2}{3}\right).\left(x+\dfrac{1}{4}\right)=0\)
Tìm x biết:
\(a,\left(x-\dfrac{3}{4}\right)+50\%=\dfrac{1}{6}\)
\(b,\dfrac{1}{2}x-\dfrac{5}{6}x=\dfrac{7}{2}\)
\(c,\left(4-x\right)\left(3x+5\right)=0\)
\(d,\dfrac{x}{16}=\dfrac{50}{32}\)
\(e,\left(2x-3\right)+\dfrac{3}{2}=-\dfrac{1}{4}\)
a: =>x-3/4=1/6-1/2=1/6-3/6=-2/6=-1/3
=>x=-1/3+3/4=-4/12+9/12=5/12
b: =>x(1/2-5/6)=7/2
=>-1/3x=7/2
hay x=-21/2
c: (4-x)(3x+5)=0
=>4-x=0 hoặc 3x+5=0
=>x=4 hoặc x=-5/3
d: x/16=50/32
=>x/16=25/16
hay x=25
e: =>2x-3=-1/4-3/2=-1/4-6/4=-7/4
=>2x=-7/4+3=5/4
hay x=5/8
Tìm x :
1) \(\left(-0,75x+\dfrac{5}{2}\right).\dfrac{4}{7}-\left(-\dfrac{1}{3}\right)=-\dfrac{5}{6}\)
2) \(\left(4x-9\right)\left(2,5+\dfrac{-7}{3}x\right)=0\)
3) \(\left|x-\dfrac{3}{4}\right|-\dfrac{1}{2}=0\)
4)\(\left(\dfrac{3}{5}-\dfrac{2}{3}x\right)^3=\dfrac{-64}{125}\)
3: \(\left|x-\dfrac{3}{4}\right|-\dfrac{1}{2}=0\)
\(\Leftrightarrow\left|x-\dfrac{3}{4}\right|=\dfrac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{3}{4}=\dfrac{1}{2}\\x-\dfrac{3}{4}=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{4}\\x=\dfrac{1}{4}\end{matrix}\right.\)
Tìm x biết:
\(a,3\dfrac{1}{2}-\dfrac{1}{2}x=\dfrac{2}{3}\)
\(b,\dfrac{1}{3}+\dfrac{2}{3}:x=-7\)
\(c,\dfrac{1}{3}x+\dfrac{2}{5}\left(x-1\right)=0\)
\(d,\left(2x-3\right)\left(6-2x\right)=0\)
\(e,x:\dfrac{3}{4}+\dfrac{1}{4}=-\dfrac{2}{3}\)
\(f,\dfrac{-2}{3}-\dfrac{1}{3}\left(2x-5\right)=\dfrac{3}{2}\)
\(g,2\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|-\dfrac{3}{2}=\dfrac{1}{4}\)
\(h,\dfrac{3}{4}-2.\left|2x-\dfrac{2}{3}\right|=2\)
\(i,\left(-0,6x-\dfrac{1}{2}\right).\dfrac{3}{4}-\left(-1\right)=\dfrac{1}{3}\)
\(j,\left(3x-1\right)\left(-\dfrac{1}{2}x+5\right)=0\)
\(k,\dfrac{1}{4}+\dfrac{1}{3}:\left(2x-1\right)=-5\)
\(l,\left(2x+\dfrac{3}{5}\right)^2-\dfrac{9}{25}=0\)
\(m,3\left(3x-\dfrac{1}{2}\right)^3+\dfrac{1}{9}=0\)
\(n,60\%x+\dfrac{2}{3}x=\dfrac{1}{3}.6\dfrac{1}{3}\)
\(p,-5\left(x+\dfrac{1}{5}\right)-\dfrac{1}{2}\left(x-\dfrac{2}{3}\right)=\dfrac{3}{2}x-\dfrac{5}{6}\)
\(q,3\left(x-\dfrac{1}{2}\right)-5\left(x+\dfrac{3}{5}\right)=-x+\dfrac{1}{5}\)
a: =>1/2x=7/2-2/3=21/6-4/6=17/6
=>x=17/3
b: =>2/3:x=-7-1/3=-22/3
=>x=2/3:(-22/3)=-1/11
c: =>1/3x+2/5x-2/5=0
=>11/15x=2/5
hay x=6/11
d: =>2x-3=0 hoặc 6-2x=0
=>x=3/2 hoặc x=3
Tìm x, biết:
\(a,\dfrac{1}{3}:\left(2x-1\right)=\dfrac{-1}{6}\)
\(b,\left(3x+2\right)\left(\dfrac{-2}{5}x-7\right)=0\)
\(c,\dfrac{x}{8}=\dfrac{9}{4}\)
\(d,\dfrac{x-3}{2}=\dfrac{18}{x-3}\)
\(e,4,5x-6,2x=6,12\)
\(h,11,4-\left(x-3,4\right)=-16,2\)
a: =>2x-1=-2
=>2x=-1
hay x=-1/2
b: \(\Leftrightarrow\left[{}\begin{matrix}3x+2=0\\-\dfrac{2}{5}x-7=0\end{matrix}\right.\Leftrightarrow x\in\left\{-\dfrac{2}{3};-\dfrac{35}{2}\right\}\)
c: x/8=9/4
nên x/8=18/8
hay x=18
d: \(\Leftrightarrow\left(x-3\right)^2=36\)
=>x-3=6 hoặc x-3=-6
=>x=9 hoặc x=-3
e: =>-1,7x=6,12
hay x=-3,6
h: =>x-3,4=27,6
hay x=31
a) \(\dfrac{1}{3}\div\left(2x-1\right)=\dfrac{-1}{6}\)
\(\left(2x-1\right).\dfrac{1}{3}\div\left(2x-1\right)=\left(2x-1\right)\left(-\dfrac{1}{6}\right)\)
\(\dfrac{1}{3}=\left(2x-1\right)\left(-\dfrac{1}{6}\right)\)
\(\dfrac{1}{3}=-1\left(2x-1\right)\div6\)
\(\dfrac{1}{3}=-2x+1\div6\)
\(x=-\dfrac{1}{2}\)
b) \(\left(3x+2\right)\left(\dfrac{-2}{5}x-7\right)=0\)
\(TH1:3x+2=0\)
\(3x=0-2\)
\(3x=-2\)
\(x=\dfrac{-2}{3}\)
\(TH2:\left(-\dfrac{2}{5}x-7\right)=0\)
\(\left(\dfrac{-2}{5}x-7\right)=0\)
\(\left(\dfrac{-2x}{5}+\dfrac{5\left(-7\right)}{5}\right)=0\)
\(\left(\dfrac{-2x-35}{5}\right)=0\)
\(-2x-35=0\)
\(-2x=0+35\)
\(x=-\dfrac{35}{2}\)
c) \(\dfrac{x}{8}=\dfrac{9}{4}\)
\(\Leftrightarrow x=\dfrac{9.8}{4}=\dfrac{72}{4}=18\)
\(x=18\)
d) \(\dfrac{x-3}{2}=\dfrac{18}{x-3}\)
\(x-3=18+2\)
\(x=20-3\)
\(x=17\)
e) \(4,5x-6,2x=6,12\)
\(\dfrac{9x}{2}-6,2.x=6,12\)
\(\dfrac{9x}{2}+\dfrac{-31x}{5}=6,12\)
\(\dfrac{5.9x}{10}+\dfrac{2\left(-31\right)x}{10}=6.12\)
\(\dfrac{45x-62x}{10}=6.12\)
\(=-17x\div10=6.12\)
\(-17x=10.6.12\)
\(x=-3,6\)
h) \(11,4-\left(x-3,4\right)=-16,2\)
\(x-3,4=-16,2+11,4\)
\(x-3,4=-4,8\)
\(x=-1,4\)
Tìm x, biết :
a/ \(\dfrac{1}{3}x\left(x^2-4\right)=0\)
b/ \(x\left(x+5\right)=x+5\)
c/ \(x^3-\dfrac{1}{9}x=0\)
3)\(^2-\left(x+5\right)^2=0\)
e/ \(\left(x+2\right)^2-\left(x-2\right)\left(x+2\right)=0\)
f/ \(x\left(2x-3\right)-6+4x=0\)
g/ \(2\left(3x-2\right)^2-9x^2+4=0\)
h/ \(x^2\left(x+1\right)+2x\left(x+1\right)=0\)
i/ \(4x^2+9x+5=0\)
a) \(\Rightarrow\dfrac{1}{3}x\left(x-2\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)
b) \(\Rightarrow\left(x+5\right)\left(x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=-5\\x=1\end{matrix}\right.\)
c) \(\Rightarrow x\left(x^2-\dfrac{1}{9}\right)=0\Rightarrow x\left(x-\dfrac{1}{3}\right)\left(x+\dfrac{1}{3}\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{3}\\x=-\dfrac{1}{3}\end{matrix}\right.\)
e) \(\Rightarrow\left(x+2\right)\left(x+2-x+2\right)=0\Rightarrow\left(x+2\right).4=0\Rightarrow x=-2\)
f) \(\Rightarrow x\left(2x-3\right)+2\left(2x-3\right)=0\Rightarrow\left(2x-3\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-2\end{matrix}\right.\)
g) \(\Rightarrow2\left(3x-2\right)^2-\left(3x-2\right)\left(3x+2\right)=0\Rightarrow\left(3x-2\right)\left(3x-6\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=2\end{matrix}\right.\)
h) \(\Rightarrow x\left(x+1\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=-2\end{matrix}\right.\)
i) \(\Rightarrow4x\left(x+1\right)+5\left(x+1\right)=0\Rightarrow\left(x+1\right)\left(4x+5\right)=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=-\dfrac{5}{4}\end{matrix}\right.\)
Tìm x, biết:
a) \(\dfrac{-3}{2}x+\dfrac{1}{4}=\dfrac{1}{2}\left(x+1\right)\)
b) \(\left(6-3\sqrt{x}\right)\left(\left|x\right|-7\right)=0\)
a: \(-\dfrac{3}{2}x+\dfrac{1}{4}=\dfrac{1}{2}\left(x+1\right)\)
=>\(-\dfrac{3}{2}x+\dfrac{1}{4}=\dfrac{1}{2}x+\dfrac{1}{2}\)
=>\(-\dfrac{3}{2}x-\dfrac{1}{2}x=\dfrac{1}{2}-\dfrac{1}{4}\)
=>\(-2x=\dfrac{1}{4}\)
=>\(2x=-\dfrac{1}{4}\)
=>\(x=-\dfrac{1}{4}:2=-\dfrac{1}{8}\)
b: ĐKXĐ: x>=0
\(\left(6-3\sqrt{x}\right)\left(\left|x\right|-7\right)=0\)
=>\(\left\{{}\begin{matrix}6-3\sqrt{x}=0\\\left|x\right|-7=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3\sqrt{x}=6\\\left|x\right|=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}=2\\\left[{}\begin{matrix}x=7\left(nhận\right)\\x=-7\left(loại\right)\end{matrix}\right.\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=7\left(nhận\right)\\x=4\left(nhận\right)\end{matrix}\right.\)
Tìm x biết :
\(\left|x-\dfrac{1}{2}\right|+\left|x-\dfrac{1}{3}\right|+\left|x-\dfrac{1}{4}\right|+....+\left|x-\dfrac{1}{10}\right|=2x\)
Tìm x biết: a) \(\left(x-\dfrac{1}{2}\right)\left(-3-\dfrac{x}{2}\right)=0\) b) \(x-\dfrac{1}{8}=\dfrac{5}{8}\)
c) \(-\dfrac{1}{2}-\left(\dfrac{3}{2}+x\right)=-2\) d) \(x+\dfrac{1}{3}=\dfrac{-12}{5}.\dfrac{10}{6}\)
a) \(\left(x-\dfrac{1}{2}\right)\left(-3-\dfrac{x}{2}\right)=0\)
Th1 : \(x-\dfrac{1}{2}=0\)
\(x=0+\dfrac{1}{2}\)
\(x=\dfrac{1}{2}\)
Th2 : \(-3-\dfrac{x}{2}=0\)
\(\dfrac{x}{2}=-3\)
\(x=\left(-3\right)\cdot2\)
\(x=-6\)
Vậy \(x\) = \(\left(\dfrac{1}{2};-6\right)\)
b) \(x-\dfrac{1}{8}=\dfrac{5}{8}\)
\(x=\dfrac{5}{8}+\dfrac{1}{8}\)
\(x=\dfrac{3}{4}\)
c) \(-\dfrac{1}{2}-\left(\dfrac{3}{2}+x\right)=-2\)
\(\dfrac{3}{2}+x=-\dfrac{1}{2}-\left(-2\right)\)
\(\dfrac{3}{2}+x=\dfrac{3}{2}\)
\(x=\dfrac{3}{2}-\dfrac{3}{2}\)
\(x=0\)
d) \(x+\dfrac{1}{3}=\dfrac{-12}{5}\cdot\dfrac{10}{6}\)
\(x+\dfrac{1}{3}=-4\)
\(x=-4-\dfrac{1}{3}\)
\(x=-\dfrac{13}{3}\)
Tìm x:
a) \(\dfrac{1}{3}.x+\dfrac{2}{5}\left(x-1\right)=0\)
b)\(-5.\left(x+\dfrac{1}{5}\right)-\dfrac{1}{2}.\left(x-\dfrac{2}{3}\right)=x\)
c)\(\left(x+\dfrac{1}{2}\right).\left(\dfrac{2}{3}-2x\right)=0\)
d)\(9.\left(3x+1\right)^2=16\)
a: =>1/3x+2/5x-2/5=0
=>11/15x-2/5=0
=>11/15x=2/5
=>x=2/5:11/15=2/5*15/11=30/55=6/11
b: =>-5x-1-1/2x+1/3=x
=>-11/2x-2/3-x=0
=>-13/2x=2/3
=>x=-2/3:13/2=-2/3*2/13=-4/39
c: (x+1/2)(2/3-2x)=0
=>x+1/2=0 hoặc 2/3-2x=0
=>x=1/3 hoặc x=-1/2
d: 9(3x+1)^2=16
=>(3x+1)^2=16/9
=>3x+1=4/3 hoặc 3x+1=-4/3
=>3x=1/3 hoặc 3x=-7/3
=>x=1/9 hoặc x=-7/9
Tìm x biết
a)\(\left(3x+\dfrac{1}{3}\right)\left(x-\dfrac{1}{2}\right)=0\)
b)\(\left(x-\dfrac{3}{2}\right)\left(2x+1\right)>0\)
c)\(\left(2-x\right)\left(\dfrac{4}{5}-x\right)< 0\)
d)\(\left(x-\dfrac{4}{7}\right):\left(x+\dfrac{1}{2}\right)>0\)
e)\(2\left(x+1\right)-\dfrac{1}{3}.\left(x-1\right)=\dfrac{2}{3}\)
k)\(\left|4x-0,2\right|=0,2\)
a)
\(\left(3x+\dfrac{1}{3}\right)\left(x-\dfrac{1}{2}\right)=0\\ \Rightarrow\left[{}\begin{matrix}3x+\dfrac{1}{3}=0\\x-\dfrac{1}{2}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{9}\\x=\dfrac{1}{2}\end{matrix}\right.\)
b)
\(\left(x-\dfrac{3}{2}\right)\left(2x+1\right)>0\\ \Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-\dfrac{3}{2}>0\\2x+1>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-\dfrac{3}{2}< 0\\2x+1< 0\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>\dfrac{3}{2}\\x>-\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x< \dfrac{3}{2}\\x< -\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x>\dfrac{3}{2}\\x< -\dfrac{1}{2}\end{matrix}\right.\)
| 4x - 0,2 | = 0,2
=> 4x - 0,2 = \(\dfrac{-1}{5}\)
4x = \(\dfrac{-1}{5}\) + 0,2 = 0
x = \(\dfrac{0}{4}\)
=> Ko có giá trị x
=> 4x - 0,2 = \(\dfrac{1}{5}\)
4x = \(\dfrac{1}{5}\)+ 0,2 = \(\dfrac{2}{5}\)
x = \(\dfrac{2}{5}\): 4 = \(\dfrac{2}{5}\). 4 = \(\dfrac{8}{5}\)
Vậy x = \(\dfrac{8}{5}\)