Cho góc nhọn xOy, Oz là phân giác của góc xOy. Trên Ox, Oy lần lượt lấy hai điểm A và B sao cho OA=OB. Tren Oz lấy điểm I. CHứng minh:
a) IA=IB, \(\widehat{AOI}=\widehat{BIO}\)
b) AB vuông góc OI
Cho góc nhọn xoy và tia phân giác Oz của góc đó. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA=OB, trên tia Oz lấy điểm I bất kỳ. Chứng minh rằng:
a)Tam giác AOI = Tam giác BOI
b) AB vuông góc với OI
4. Cho góc nhọn xOy và tia phân giác Oz của góc đó. Trên Ox, lấy điểm A, trên Oy lấy điểm B sao cho OA = OB. Trên tia Oz, lấy điểm I bất kì. Chứng minh:
a. Δ AOI = Δ BOI.
b. AB ⊥ OI.
a: Xét ΔOAI và ΔOBI có
OA=OB
\(\widehat{AOI}=\widehat{BOI}\)
OI chung
Do đó: ΔOAI=ΔOBI
Cho góc nhọn xOy và tia phân giác Oz của góc đó. Trên tia Ox lấy điểm A, trên tia oy lấy điểm B sao cho OA=OB, trên tia Oz lấy điểm I bất kỳ. Chứng minh rằng:
a) Tam giác AOI = Tam giác BOI
b) AB vuông góc với OI
Cho góc nhọn xOy và tia phân giác Oz của góc đó. Trên Ox lấy điểm A, trên Oy lấy điểm b sao cho OA = OB. Trên Oz lấy điểm I. Chứng minh :
a) tam giác AOI = tam giác BOI ;
b) AB vuông góc với OI
Các bạn giúp mình với, nhanh nhé ! Thanks !
Ta có hình vẽ:
a) Vì Oz là phân giác của xOy nên \(xOz=yOz=\frac{xOy}{2}\)
Xét Δ AOI và Δ BOI có:
OA = OB (gt)
AOI = BOI (cmt)
OI là cạnh chung
Do đó, Δ AOI = Δ BOI (c.g.c) (đpcm)
b) Xét Δ AOH và Δ BOH có:
OA = OB (gt)
AOH = BOH (câu a)
OH là cạnh chung
Do đó, Δ AOH = Δ BOH (c.g.c)
=> AHO = BHO (2 góc tương ứng)
Mà AHO + BHO = 180o (kề bù) nên AHO = BHO = 90o
=> \(AB\perp OI\left(đpcm\right)\)
a) xét \(\Delta AOI,\Delta BOI\) có :
OA = OB ( GT )
OI cạnh chung
\(\widehat{AOI}\) = \(\widehat{BOI}\) ( vì Oz phân giác \(\widehat{xOy}\) )
\(\Rightarrow\Delta AOI=\Delta BOI\left(c.g.c\right)\)
b )
gọi H là giao điểm AB , OI
xét \(\Delta OAH,\Delta OBH\) có
OH chung
\(\widehat{AOH}\) = \(\widehat{BOH}\) ( OI phân giác \(\widehat{xOy}\) )
OA = OB ( GT )
\(\Rightarrow\Delta OAH=\Delta BOH\left(c.g.c\right)\)
ta có : \(\widehat{AHO}\) = \(\widehat{BHO}\) ( 2 góc tương ứng )
mà \(\widehat{AOH}\) + \(\widehat{BHO}\) = 180o ( 2 góc kề bù )
\(\Rightarrow\widehat{AOH}\) = \(\widehat{BHO}\) = \(\frac{180^O}{2}\) = 90o
\(\Rightarrow AB\perp OI\) tại H
Cho góc nhon xOy và tia phân giác Oz của góc đó. Trên Ox lấy điểm A, trên Oy lấy điểm B sao chp OA=OB. Trên Oz lấy điểm I
a, Chứng minh tam giác AOI = tam giác BOI
b, Chứng minh AB vuông góc với OI
a
cạnh chung oi
oa=ob
O1=o2
(vì p giác mà)
b
ta phai cmr tam giác oia hoặc oib là tam giác vuông
Cho góc XOY, gọi OZ là tia phân giác góc XOY. Trên OX lấy điểm A, trên OY lấy điểm B sao cho OA = OB. Lấy điểm I trên OZ sao cho OI>OA. So sánh IA và IB
1. Cho góc xOy nhọn và tia phân giác Oz. Lấy điểm A trên tia Ox, điểm B trên tia Oy sao cho OA = OB. Lấy điểm I thuộc tia Oz. Chứng minh:
a)△AOI=△BOI
b) AB ⊥ OI
a: Xét ΔOAI và ΔOBI có
OA=OB
\(\widehat{AOI}=\widehat{BOI}\)
OI chung
Do đó: ΔOAI=ΔOBI
\(a,\left\{{}\begin{matrix}OA=OB\\\widehat{AOI}=\widehat{BOI}\\OI\text{ chung}\end{matrix}\right.\Rightarrow\Delta AOI=\Delta BOI\left(c.g.c\right)\\ b,\text{Gọi }AB\cap OI=\left\{H\right\}\\ \left\{{}\begin{matrix}OA=OB\\\widehat{AOI}=\widehat{BOI}\\OH\text{ chung}\end{matrix}\right.\Rightarrow\Delta AOH=\Delta BOH\left(c.g.c\right)\\ \Rightarrow\widehat{AHO}=\widehat{BHO}\\ \text{Mà }\widehat{AHO}+\widehat{BHO}=180^0\\ \Rightarrow\widehat{AHO}=\widehat{BHO}=90^0\\ \Rightarrow OI\bot AB\)
Cho góc nhọn xOy và tia phân giác Oz của góc đó. Trên tia Õ lấy điểm A; Trên tia Oy lấy điểm B sao cho OA = OB. Trên tia Oz lấy điểm I. Chứng minh:
a) Tam giác AOI = tam giác BOI
b) AB vuông góc với OI
Hình bạn tự vẽ nha
Xét \(\Delta AIO\) và \(\Delta BIO\) có:
OI chung
\(\widehat{AOI} = \widehat{BOI}\) (Oz là tia phân giác của \(\widehat{xOy}\) (gt))
OA = OB (gt)
\(\Rightarrow\)\(\Delta AIO = \Delta BIO\) (cgc)
b) Vì \(\Delta AIO = \Delta BIO\) (cmt)
\(\Rightarrow IB=IA\) (2 cạnh tương ứng)
mà OA = OB (gt)
\(\Rightarrow OI\) là đường trung trực của AB
hay \(AB \perp OI\)
Cho góc nhọn xOy, Oz là phân giác của góc nhọn xOy. Trên Ox, Oy lần lượt lấy hai điểm A và B sao cho OA=OB. Trên Oz lấy điểm I.
a) Chứng minh IA=IB.
b. Chứng minh \(\widehat{AIO}\) và \(\widehat{BIO}\)
c) Chứng minh \(AB\perp OI\)
a: Xét ΔOAI và ΔOBI có
OA=OB
\(\widehat{AOI}=\widehat{BOI}\)
OI chung
Do đó: ΔOAI=ΔOBI
Suy ra: IA=IB
b: Ta có: ΔOAI=ΔOBI
nên \(\widehat{AIO}=\widehat{BIO}\)
c: Ta có: ΔOAB cân tại O
mà OI là đường phân giác
nên OI là đường cao