Chỉ cần chuyển sang hằng đẳng thức là đc ko cần giải hết
\(\sqrt{21-12\sqrt{3}}\)
thành hằng đẳng thức đc ko nhỉ 14-6\(\sqrt{5}\)
\(=\left(3-\sqrt{5}\right)^2\)
Bấm máy giải pt bậc 2 với hệ số: \(1\) ; \(-14\); \(\dfrac{6^2.5}{4}\) nghiệm trả về sẽ cho biết có phân tích được hay không
bài 5 sử dụng hằng đẳng thức bình phương một tổng ( hiệu) để khai phương
a)\(\sqrt{7+4\sqrt{3}}\)
b)\(\sqrt{8-2\sqrt{12}}\)
c)\(\sqrt{21+6\sqrt{6}}\)
d)\(\sqrt{15-6\sqrt{6}}\)
e)\(\sqrt{29-12\sqrt{5}}\)
g)\(\sqrt{41+12\sqrt{5}}\)
\(\sqrt{7+4\sqrt{3}}=\sqrt{\left(2+\sqrt{3}\right)^2}=2+\sqrt{3}\)
\(\sqrt{8-2\sqrt{12}}=\sqrt{\left(\sqrt{6}-\sqrt{2}\right)^2}=\left|\sqrt{6}-\sqrt{2}\right|=\sqrt{6}-\sqrt{2}\)
\(\sqrt{21+6\sqrt{6}}=\sqrt{\left(3\sqrt{2}-\sqrt{3}\right)^2}=\left|3\sqrt{2}-\sqrt{3}\right|=3\sqrt{2}-\sqrt{3}\)
\(\sqrt{15-6\sqrt{6}}=\sqrt{\left(3-\sqrt{6}\right)^2}=\left|3-\sqrt{6}\right|=3-\sqrt{6}\)
\(\sqrt{29-12\sqrt{5}}=\sqrt{\left(2\sqrt{5}-3\right)^2}=\left|2\sqrt{5}-3\right|=2\sqrt{5}-3\)
\(\sqrt{41+12\sqrt{5}}=\sqrt{\left(6+\sqrt{5}\right)^2}=6+\sqrt{5}\)
Mọi người ơi giúp mình với nha!! Mình cần rất gấp
Giải phương trình:
\(A=\sqrt{3x^2+6x+12}+\sqrt{5x^4-10x^2+9}=-2x^2-4x+3\)
*Lưu ý: Mình mới học tới bài Căn thức bậc hai và hằng đẳng thức \(\sqrt{A^2}=\left|A\right|\)thôi.
Ta có:
\(\sqrt{3x^2+6x+12}+\sqrt{5x^4-10x^2+9}\)
\(=\sqrt{\left(3x^2+6x+3\right)+9}+\sqrt{\left(5x^4-10x^2+5\right)+4}\)
\(=\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2-1\right)^2+4}\ge3+2=5\left(1\right)\)
Ta lại có:
\(-2x^2-4x+3=-2\left(x+1\right)^2+5\le5\left(2\right)\)
Từ (1) và (2) dấu = xảy ra khi \(x=-1\)
Cho x=y=a, xy=b
Tính gt bt sau theo a,b
a, x^4 +y^4
b,x^5 +y^5
( sử dụng các hằng đẳng thức để giải nhé!)
Mn chỉ cần chuyển đỏi bt giúp mk, ko cần chi tiết quá đâu. Cảm ơn mn
Xl mn,dữ kiện đầu là x+y=a chứ ko phải x=y=a nhé
√(17-12√2)
các bạn chuyển thành hằng đẳng thức cho mk nhé mk cần gấp
`\sqrt{17-12\sqrt{2}}`
`=\sqrt{17-6.\sqrt{4}.\sqrt{2}}`
`=\sqrt{17-6\sqrt{8}}`
`=\sqrt{9-2.3.\sqrt{8}+8}`
`=\sqrt{(3-\sqrt{8})^{2}}`
`=|3-\sqrt{8}|`
`=3-\sqrt{8}` ( Vì `3=\sqrt{9}>\sqrt{8}` )
\(\sqrt{17-12\sqrt{2}}=3-2\sqrt{2}\)
\(\sqrt{6+\sqrt{24}+\sqrt{12}+\sqrt{8}-\sqrt{3}}=\sqrt{2}+1\)
C/m hằng đẳng thức trên
\(\left(\sqrt{3+\sqrt{15}-\sqrt{3-\sqrt{5}}}\right)^2\)
chỉ giúp tui đê
áp dụng hằng đẳng thức đó mn
\(\left(\sqrt{3+\sqrt{15}-\sqrt{3-\sqrt{5}}}\right)^2=3+\sqrt{15}-\sqrt{3-\sqrt{5}}=\dfrac{\sqrt{2}\left(3+\sqrt{15}-\sqrt{3-\sqrt{5}}\right)}{\sqrt{2}}=\dfrac{3\sqrt{2}+\sqrt{30}-\sqrt{6-2\sqrt{5}}}{\sqrt{2}}=\dfrac{3\sqrt{2}+\sqrt{30}-\sqrt{5-2\sqrt{5}+1}}{\sqrt{2}}=\dfrac{3\sqrt{2}+\sqrt{30}-\sqrt{\left(\sqrt{5}-1\right)^2}}{\sqrt{2}}=\dfrac{3\sqrt{2}+\sqrt{30}-\left|\sqrt{5}-1\right|}{\sqrt{2}}=\dfrac{3\sqrt{2}+\sqrt{30}-\sqrt{5}+1}{\sqrt{2}}=\dfrac{\sqrt{2}\left(3\sqrt{2}+\sqrt{30}-\sqrt{5}+1\right)}{2}=\dfrac{6+2\sqrt{15}-\sqrt{10}+\sqrt{2}}{2}\)
Bai 1: Tìm điều kiện xác định của các biểu thức sau (mấy cái số kiểu 1. 2. Đầu tiên Là số bài chứ Ko phải phép tính trong bài nhé)
\(1.\sqrt{x+8}.\sqrt{x-5}\)
\(2.\dfrac{2x+3}{\sqrt{x^2-4}}\)
\(3.\sqrt{21+12\sqrt{3}}+\sqrt{21-12\sqrt{3}}\)
\(4.3-\sqrt{16^2-1}\)
\(5.\sqrt{x^2-5x+6}\)
1) ĐKXĐ: \(x\ge5\)
2) ĐKXĐ: \(\left[{}\begin{matrix}x< -2\\x>2\end{matrix}\right.\)
5) ĐKXĐ: \(\left[{}\begin{matrix}x\le2\\x\ge3\end{matrix}\right.\)
* Chứng minh đẳng thức:
\(\left(\dfrac{14}{\sqrt{14}}+\dfrac{\sqrt{12}+\sqrt{30}}{\sqrt{2}+\sqrt{5}}\right).\sqrt{5-\sqrt{21}}=4\)
\(VT=\left(\dfrac{\sqrt{14.14}}{\sqrt{14}}+\dfrac{\sqrt{6}\left(\sqrt{2}+\sqrt{5}\right)}{\sqrt{2}+\sqrt{5}}\right).\sqrt{5-\sqrt{21}}\)
\(=\left(\sqrt{14}+\sqrt{6}\right)\sqrt{5-\sqrt{21}}\)
\(=\sqrt{30-6\sqrt{21}}+\sqrt{70-14\sqrt{21}}\)
\(=\sqrt{21-2.3\sqrt{21}+9}+\sqrt{21-2.7.\sqrt{21}+49}\)
\(=\sqrt{\left(\sqrt{21}-3\right)^2}+\sqrt{\left(7-\sqrt{21}\right)^2}\)
\(=\sqrt{21}-3+7-\sqrt{21}=4\)