\(=\left(3-\sqrt{5}\right)^2\)
Bấm máy giải pt bậc 2 với hệ số: \(1\) ; \(-14\); \(\dfrac{6^2.5}{4}\) nghiệm trả về sẽ cho biết có phân tích được hay không
\(=\left(3-\sqrt{5}\right)^2\)
Bấm máy giải pt bậc 2 với hệ số: \(1\) ; \(-14\); \(\dfrac{6^2.5}{4}\) nghiệm trả về sẽ cho biết có phân tích được hay không
giúp e giải nhanh đc ko ạ huhu
tính :\(\sqrt{6-2\sqrt{5}}+\sqrt{14-6\sqrt{5}}\)
Chứng minh các đẳng thức :
a) \(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}=\sqrt{6}\)
b) \(\sqrt{\dfrac{4}{\left(2-\sqrt{5}\right)^2}}-\sqrt{\dfrac{4}{\left(2+\sqrt{5}\right)^2}}=8\)
Chứng minh đẳng thức :
\(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}=\sqrt{6}\)
Chứng minh các đẳng thức sau :
a) \(\left(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\dfrac{\sqrt{216}}{6}\right).\dfrac{1}{\sqrt{6}}=-1,5\)
b) \(\left(\dfrac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\dfrac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\dfrac{1}{\sqrt{7}-\sqrt{5}}=-2\)
c) \(\dfrac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}:\dfrac{1}{\sqrt{a}-\sqrt{b}}=a-b\) với a, b dương và \(a\ne b\)
d) \(\left(1+\dfrac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(1-\dfrac{a-\sqrt{a}}{\sqrt{a}-1}\right)=1-a\) với \(a\ge0\) và \(a\ne1\)
Chứng minh đẳng thức
\(\sqrt{9-4\sqrt{5}}-\sqrt{5}=-2\)
Chứng minh đẳng thức
\(\left(3+\sqrt{5}\right)\left(\sqrt{10}-\sqrt{2}\right)\sqrt{3-\sqrt{5}}=8\)
Chứng minh đẳng thức
\(2\sqrt{2}\left(\sqrt{3}-2\right)+\left(1+2\sqrt{2}\right)^2-2\sqrt{6}=9\)
rút gọn biểu thức
a) \(\frac{5+\sqrt{5}}{5-\sqrt{5}}+\frac{5-\sqrt{5}}{5+\sqrt{5}}\)
b) \(\frac{3}{2+\sqrt{3}}+\frac{13}{4-\sqrt{3}}+\frac{6}{\sqrt{3}}\)
c) \(\left(\frac{\sqrt{14}-\sqrt{7}}{\sqrt{2}-1}+\frac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}\right):\frac{1}{\sqrt{7}-\sqrt{5}}\)
Chứng minh đẳng thức
\(\sqrt{\frac{4}{\left(2-\sqrt{5}\right)^2}}-\sqrt{\frac{4}{\left(2+\sqrt{5}\right)^2}}=8\)
Giải đúng mk tick