Ta có VT: \(\sqrt{\frac{4}{\left(2-\sqrt{5}\right)^2}}-\sqrt{\frac{4}{\left(2+\sqrt{5}\right)^2}}\)=\(\frac{\sqrt{4}}{\sqrt{\left(2-\sqrt{5}\right)^2}}-\frac{\sqrt{4}}{\sqrt{\left(2+\sqrt{5}\right)^2}}\)
=\(\frac{2}{\left|2-\sqrt{5}\right|}-\frac{2}{\left|2+\sqrt{5}\right|}\)
=\(\frac{2}{\sqrt{5}-2}-\frac{2}{2+\sqrt{5}}\)
=\(\frac{2.\left(2+\sqrt{5}\right)-2.\left(\sqrt{5}-2\right)}{\left(\sqrt{5}-2\right).\left(2+\sqrt{5}\right)}\)
=\(2.\left(2+\sqrt{5}\right)-2.\left(\sqrt{5}-2\right)\)
=\(4+2\sqrt{5}-2\sqrt{5}+4\)
=8 (bằng VP)