cho a,b,c,d là các số thực biết \(b^2=ac;c^2=bd\) chứng minh rằng:\(\frac{a^4+b^4+c^4}{b^4+c^4+d^4}=\frac{\left(2020a+2021c\right)^2}{\left(2021b+2022d\right)^2}\)
Cho a,b,c,d là các số thực thỏa mãn \(a^2+b^2=2,c^2+d^2+25=6c+8d\). Tìm GTLN của P=3c+4d-(ac+bd)
Cho các số thực \(a,b,c,d\) thỏa mãn \(a^2+b^2=25;c^2+d^2=16;ac+bd\ge20.\)Tìm Max:
\(a+d\)
Cho a,b,c,d là các số thực không âm thỏa \(a^2+b^2+c^2+d^2=4\). CMR:
\(2\left(a^3+b^3+c^3+d^3\right)\ge2+\dfrac{3}{\sqrt{2}}\sqrt{2+ab+ac+ad+bc+bd+dc}\)
BĐT cần c/m tương đương:
\(2\left(a^3+b^3+c^3+d^3\right)\ge2+\dfrac{3}{2}\sqrt{4+2\left(ab+ac+ad+bc+bd+cd\right)}\)
\(\Leftrightarrow2\left(a^3+b^3+c^3+d^3\right)\ge2+\dfrac{3}{2}\sqrt{\left(a+b+c+d\right)^2}\)
\(\Leftrightarrow2\left(a^3+b^3+c^3+d^3\right)\ge2+\dfrac{3}{2}\left(a+b+c+d\right)\)
\(\Leftrightarrow4\left(a^3+b^3+c^3+d^3\right)\ge4+3\left(a+b+c+d\right)\)
Dễ dàng chứng minh điều này bằng AM-GM:
\(a^3+a^3+1+b^3+b^3+1+c^3+c^3+1+d^3+d^3+1\ge3a^2+3b^2+3c^2+3d^2\)
\(\Rightarrow2\left(a^3+b^3+c^3+d^3\right)+4\ge12\)
\(\Rightarrow a^3+b^3+c^3+d^3\ge4\) (1)
Lại có:
\(a^2+b^2+c^2+d^2\ge\dfrac{1}{4}\left(a+b+c+d\right)^2\)
\(\Rightarrow a+b+c+d\le4\) (2)
(1);(2) \(\Rightarrow4\left(a^3+b^3+c^3+d^3\right)\ge16\ge4+3.4\ge4+3\left(a+b+c+d\right)\) (đpcm)
Cho a,b,c,d là các số thực. Chứng minh rằng:
\(\left(ac+bd\right)^2+\left(ad-bc\right)^2=\left(a^2+b^2\right)\left(c^2+d^2\right)\)
(ac+bd)^2=\(^{a^2c^2+2abcd+b^2d^2}\)
\(\left(ad-bc\right)^2=a^2d^2-2abcd+b^2c^2\)
\(\Rightarrow\left(ac+bd\right)^2-\left(ad-bc\right)^2=a^2c^2+a^2d^2+b^2c^2+b^2d^2\) =vp(dpcm)
1.cho a, b,c là các số thực dương thỏa mãn a^3 /(a^2+b^2) + b^3/(b^2+c^2) + c^3/(c^2+a^2) >= (a+b+c)/2
2.cho a, b,c là các số thực dương thỏa mãn (a^3 +b^3+c^3)/2abc + (a^2+ b^2)/c^2 + (b^2+c^2)/(a^2+bc) + (c^2+a^2)/b^2+ac) >= 9/2
Cho a và b là các số thực khác 0 Biết \(\lim\limits_{x\rightarrow-\infty}\left(ax+b-\sqrt{x^2-6x+2}\right)=5\). Số lớn hơn trong hai số a và b là
A/ 4 B. 3 C.2 D. 1
Giới hạn đã cho hữu hạn nên \(a=-1\)
\(\lim\limits_{x\rightarrow-\infty}\dfrac{\left(b-x\right)^2-\left(x^2-6x+2\right)}{b-x+\sqrt{x^2-6x+2}}=\lim\limits_{x\rightarrow-\infty}\dfrac{\left(6-2b\right)x+b^2-2}{-x+\sqrt{x^2-6x+2}+b}\)
\(=\lim\limits_{x\rightarrow-\infty}\dfrac{6-2b+\dfrac{b^2-2}{x}}{-1-\sqrt{1-\dfrac{6}{x}+\dfrac{2}{x^2}}+\dfrac{b}{x}}=\dfrac{6-2b}{-2}=5\)
\(\Rightarrow b=8\)
Cả 4 đáp án đều sai, số lớn hơn là 8
Cho a; b; c là các số thực dương thỏa mản: \(a+b+c=\dfrac{2}{a+b}+\dfrac{2}{a+c}+\dfrac{2}{b+c}\)
CMR: \(ab+bc+ac\le3\)
Áp dụng bất đẳng thức Chevbyshev cho hai bộ đơn điệu cùng chiều \(\left(\dfrac{2}{a+b},\dfrac{2}{b+c},\dfrac{2}{c+a}\right)\) và \(\left(c\left(a+b\right),a\left(b+c\right),b\left(c+a\right)\right)\) ta có \(2c+2a+2b=\dfrac{2}{a+b}.c\left(a+b\right)+\dfrac{2}{b+c}.a\left(b+c\right)+\dfrac{2}{c+a}.b\left(c+a\right)\ge\dfrac{1}{3}\left(\dfrac{2}{a+b}+\dfrac{2}{b+c}+\dfrac{2}{c+a}\right)\left(a\left(b+c\right)+b\left(c+a\right)+c\left(a+b\right)\right)=\dfrac{2}{3}\left(ab+bc+ca\right)\left(\dfrac{2}{a+b}+\dfrac{2}{b+c}+\dfrac{2}{c+a}\right)\).
Mà \(\dfrac{2}{a+b}+\dfrac{2}{b+c}+\dfrac{2}{c+a}=a+b+c\) nên \(ab+bc+ca\le3\).
Cho a,b,c là các số thực dương. CMR \(a^2+b^2+c^2+abc+4\ge2\left(ab+bc+ac\right)\)
Theo nguyên lý Dirichlet, trong 3 số a;b;c luôn có hai số cùng phía so với 2, không mất tính tổng quát, giả sử đó là a và b
\(\Rightarrow\left(a-2\right)\left(b-2\right)\ge0\Leftrightarrow ab+4\ge2a+2b\)
\(\Leftrightarrow abc+4c\ge2ac+2bc\)
\(\Rightarrow VT\ge a^2+b^2+c^2+2ac+2bc-4c+4\)
\(VT\ge2ab+c^2-4c+4+2bc+2ac\)
\(VT\ge2\left(ab+bc+ca\right)+\left(c-2\right)^2\ge2\left(ab+bc+ca\right)\)
Dấu "=" xảy ra khi \(a=b=c=2\)
1.Tìm tất cả các số nguyên tố p sao cho só 2p+2 là tích 2 số tự nhên liên tiếp
2.Cho a, b, c, d là 4 số thực đôi 1 khác nhau. Biết rằng a,b là 2 nghiệm của phương trình \(x^2+mx+1=0\) (m, n là 2 số thực).
CM pt \(\left(a-c\right)\left(b-c\right)x^2+2\left(a-b\right)\left(c-d\right)x+\left(a-d\right)\left(d-b\right)=0\)
có 2 nghiệm thực phân biệt