Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kinder
Xem chi tiết
Nguyễn Thị Cầu Nguyễn
3 tháng 9 2023 lúc 9:42

Để giải các phương trình này, chúng ta sẽ làm từng bước như sau: 1. 13x(7-x) = 26: Mở ngoặc và rút gọn: 91x - 13x^2 = 26 Chuyển về dạng bậc hai: 13x^2 - 91x + 26 = 0 Giải phương trình bậc hai này để tìm giá trị của x. 2. (4x-18)/3 = 2: Nhân cả hai vế của phương trình với 3 để loại bỏ mẫu số: 4x - 18 = 6 Cộng thêm 18 vào cả hai vế: 4x = 24 Chia cả hai vế cho 4: x = 6 3. 2xx + 98x2022 = 98x2023: Rút gọn các thành phần: 2x^2 + 98x^2022 = 98x^2023 Chia cả hai vế cho 2x^2022: x + 49 = 49x Chuyển các thành phần chứa x về cùng một vế: 49x - x = 49 Rút gọn: 48x = 49 Chia cả hai vế cho 48: x = 49/48 4. (x+1) + (x+3) + (x+5) + ... + (x+101): Đây là một dãy số hình học có công sai d = 2 (do mỗi số tiếp theo cách nhau 2 đơn vị). Số phần tử trong dãy là n = 101/2 + 1 = 51. Áp dụng công thức tổng của dãy số hình học: S = (n/2)(a + l), trong đó a là số đầu tiên, l là số cuối cùng. S = (51/2)(x + (x + 2(51-1))) = (51/2)(x + (x + 100)) = (51/2)(2x + 100) = 51(x + 50) Vậy, kết quả của các phương trình là: 1. x = giá trị tìm được từ phương trình bậc hai. 2. x = 6 3. x = 49/48 4. S = 51(x + 50)

Nguyễn Thị Cầu Nguyễn
3 tháng 9 2023 lúc 9:43

nhầm

 

Lê Thu Hiền
Xem chi tiết
yen hai
Xem chi tiết
Tôm Tớn
31 tháng 7 2015 lúc 21:56

a) <=> 4x^3 - 12x^2 - x^2 + 3x + 6x - 18 = 0

<=> 4x^2 (x - 3) - x(x - 3) + 6(x - 3) = 0

<=> (x - 3)(4x^2 - x + 6) = 0

xét 2 th

. x - 3 = 0 <=> x = 3

. 4x^2 - x + 6 = 0

<=> 4x^2 + 2.(1/2)x + 1/4 + 23/4 = 0

<=> (4x + 1/2)^2 = -23/4

.... phần sau bạn tự làm nhé 

vậy pt trên có nghiệm là ...

. mik bận nên chỉ làm như vậy thôi.. những ý sau thì tách tương tự

Trần Thị Loan
31 tháng 7 2015 lúc 22:01

c) => x3 + 2x2 - 6x - 12x + 4x + 8 = 0

=> (x3 + 2x2)  -  (6x + 12x)  + (4x + 8) = 0

=> x2. (x +2) - 6x. (x + 2) + 4.(x + 2) =0

=> (x +2).(x2  - 6x + 4) = 0

=> x+ 2 = 0 hoặc x - 6x + 4 = 0

+) x+ 2 =0 => x = -2

+) x - 6x + 4 = 0 => x - 2.x.3  + 9  - 5 = 0 => (x -3)2  = 5

=> x - 3 = \(\sqrt{5}\) hoặc x - 3 = - \(\sqrt{5}\)

=> x = 3 + \(\sqrt{5}\) hoặc x = 3 - \(\sqrt{5}\)

vậy...

 

Lê Thu Hiền
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 7 2021 lúc 16:06

a.

ĐKXĐ: \(x\ge-\dfrac{5}{3}\)

\(9x^2-3x-\left(3x+5\right)-\sqrt{3x+5}=0\)

Đặt \(\sqrt{3x+5}=t\ge0\)

\(\Rightarrow9x^2-3x-t^2-t=0\)

\(\Delta=9+36\left(t^2+t\right)=\left(6t+3\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3+6t+3}{18}=\dfrac{t+1}{3}\\x=\dfrac{3-6t-3}{18}=-\dfrac{t}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}t=3x-1\\t=-3x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{3x+5}=3x-1\left(x\ge\dfrac{1}{3}\right)\\\sqrt{3x+5}=-3x\left(x\le0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+5=9x^2-6x+1\left(x\ge\dfrac{1}{3}\right)\\3x+5=9x^2\left(x\le0\right)\end{matrix}\right.\)

\(\Leftrightarrow...\)

Nguyễn Việt Lâm
22 tháng 7 2021 lúc 16:18

c.

ĐKXĐ: \(x\ge-5\)

\(x^2-3x+2-x-5-\sqrt{x+5}=0\)

Đặt \(\sqrt{x+5}=t\ge0\)

\(\Rightarrow-t^2-t+x^2-3x+2=0\)

\(\Delta=1+4\left(x^2-3x+2\right)=\left(2x-3\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{1+2x-3}{-2}=1-x\\t=\dfrac{1-2x+3}{-2}=x-2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+5}=1-x\left(x\le1\right)\\\sqrt{x+5}=x-2\left(x\ge2\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+5=x^2-2x+1\left(x\le1\right)\\x+5=x^2-4x+4\left(x\ge2\right)\end{matrix}\right.\)

\(\Leftrightarrow...\)

Nguyễn Việt Lâm
22 tháng 7 2021 lúc 16:13

b.

ĐKXĐ: \(x\ge-\dfrac{8}{3}\)

\(\left(3x+2\right)^2-6-\sqrt{3x+8}=0\)

Đặt \(\sqrt{3x+8}=t\ge0\Rightarrow3x+2=t^2-6\)

\(\left(t^2-6\right)^2-6-t=0\)

\(\Leftrightarrow t^4-12t^2-t+30=0\)

\(\Leftrightarrow\left(t^2+t-5\right)\left(t^2-t-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=3\\t=\dfrac{\sqrt{21}-1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{3x+8}=3\\\sqrt{3x+8}=\dfrac{\sqrt{21}-1}{2}\end{matrix}\right.\)

\(\Leftrightarrow...\)

Mai Thị Thúy
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 7 2021 lúc 22:53

a.

\(3\sqrt[3]{3\left(x+1\right)+2}=\left(x+1\right)^3-2\)

Đặt \(\sqrt[3]{3\left(x+1\right)+2}=y\) ta được:

\(\left\{{}\begin{matrix}3y=\left(x+1\right)^3-2\\3\left(x+1\right)+2=y^3\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}3y+2=\left(x+1\right)^3\\3\left(x+1\right)+2=y^3\end{matrix}\right.\)

\(\Rightarrow\left(x+1\right)^3-y^3=3y-3\left(x+1\right)\)

\(\Leftrightarrow\left(x+1-y\right)\left[\left(x+1\right)^2+y\left(x+1\right)+y^2+3\right]=0\)

\(\Leftrightarrow x+1=y\)

\(\Leftrightarrow\left(x+1\right)^3=y^3\)

\(\Leftrightarrow\left(x+1\right)^3=3\left(x+1\right)+2\)

\(\Leftrightarrow x^3+3x^2-4=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)^2=0\)

Nguyễn Việt Lâm
27 tháng 7 2021 lúc 23:02

b.

\(\Leftrightarrow8x^3-\left(6x+1\right)+2x-\sqrt[3]{6x+1}=0\)

Đặt \(\left\{{}\begin{matrix}2x=a\\\sqrt[3]{6x+1}=b\end{matrix}\right.\) ta được:

\(a^3-b^3+a-b=0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2+1\right)=0\)

\(\Leftrightarrow a=b\)

\(\Leftrightarrow2x=\sqrt[3]{6x+1}\)

\(\Leftrightarrow8x^3-6x-1=0\)

Đặt \(f\left(x\right)=8x^3-6x-1\)

\(f\left(x\right)\) là hàm đa thức nên liên tục trên R, đồng thời \(f\left(x\right)\) bậc 3 nên có tối đa 3 nghiệm

\(f\left(-1\right)=-3< 0\) ; \(f\left(-\dfrac{1}{2}\right)=1>0\) \(\Rightarrow f\left(-1\right).f\left(-\dfrac{1}{2}\right)< 0\)

\(\Rightarrow f\left(x\right)\) có 1 nghiệm thuộc \(\left(-1;-\dfrac{1}{2}\right)\) (1)

\(f\left(0\right)=-1\Rightarrow f\left(0\right).f\left(-\dfrac{1}{2}\right)< 0\Rightarrow f\left(x\right)\) có 1 nghiệm thuộc \(\left(-\dfrac{1}{2};0\right)\) (2)

\(f\left(1\right)=1\Rightarrow f\left(0\right).f\left(1\right)< 0\Rightarrow f\left(x\right)\) có 1 nghiệm thuộc \(\left(0;1\right)\) (3)

Từ (1);(2);(3) \(\Rightarrow\) cả 3 nghiệm của \(f\left(x\right)\) đều thuộc \(\left(-1;1\right)\)

Do đó, ta chỉ cần tìm nghiệm của \(f\left(x\right)\) với \(x\in\left(-1;1\right)\)

Do \(x\in\left(-1;1\right)\), đặt \(x=cosu\)

\(\Rightarrow8cos^3u-6cosu-1=0\)

\(\Leftrightarrow2\left(4cos^3u-3cosu\right)=1\)

\(\Leftrightarrow2cos3u=1\)

\(\Leftrightarrow cos3u=\dfrac{1}{2}\)

\(\Rightarrow\left[{}\begin{matrix}3u=\dfrac{\pi}{3}+k2\pi\\3u=-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u=\dfrac{\pi}{9}+\dfrac{k2\pi}{3}\\u=-\dfrac{\pi}{9}+\dfrac{k2\pi}{3}\end{matrix}\right.\)

Vậy nghiệm của pt là: \(x=cosu=\left\{cos\left(\dfrac{\pi}{9}\right);cos\left(\dfrac{5\pi}{9}\right);cos\left(\dfrac{7\pi}{9}\right)\right\}\)

 

phan tuấn anh
Xem chi tiết
Tran Si Anh Quoc
Xem chi tiết
Lê Thị Thục Hiền
1 tháng 9 2019 lúc 12:07

\(2x+3=2\sqrt{x+1}+\sqrt{2x+1}\left(đk:x\ge-\frac{1}{2}\right)\) (*)

Đặt \(2\sqrt{x+1}=a\left(a\ge0\right)\) , \(\sqrt{2x+1}=b\left(b\ge0\right)\)

\(a^2-b^2=4\left(x+1\right)-2x-1=4x+4-2x-1=2x+3\)

\(2x+3=a+b\)

=> \(a^2-b^2=a+b\)( do \(a^2-b^2=2x+3\))

<=> \(\left(a+b\right)\left(a-b\right)-\left(a+b\right)=0\)

<=> \(\left(a+b\right)\left(a-b-1\right)=0\)

=> \(\left[{}\begin{matrix}a=-b\\a=b+1\end{matrix}\right.\)<=> \(\left[{}\begin{matrix}2\sqrt{x+1}=-\sqrt{2x+1}\\2\sqrt{x+1}=\sqrt{2x+1}+1\end{matrix}\right.\)<=>\(\left[{}\begin{matrix}4\left(x+1\right)=2x+1\\4\left(x+1\right)=2x+1+2\sqrt{2x+1}+1\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}4x+4-2x-1=0\\4x+4-2x-1-1=2\sqrt{2x+1}\end{matrix}\right.\)<=> \(\left[{}\begin{matrix}2x+3=0\\2x+2=2\sqrt{2x+1}\end{matrix}\right.\)<=> \(\left[{}\begin{matrix}x=-\frac{3}{2}\left(ktm\right)\\x+1=\sqrt{2x+1}\end{matrix}\right.\)

=> \(x+1=\sqrt{2x+1}\)

<=> x2+2x+1=2x+1

<=> x2=0

<=>x=0(t/m pt (*))

Vậy pt (*) có tập nghiệm \(S=\left\{0\right\}\)

b, \(2+\sqrt{3-8x}=6x+\sqrt{4x-1}\) (*) (đk: \(\frac{1}{4}\le x\le\frac{3}{8}\))

<=>\(2-6x=\sqrt{4x-1}-\sqrt{3-8x}\)

Đặt \(\sqrt{3-8x}=a\left(a\ge0\right)\) , \(\sqrt{4x-1}=b\left(b\ge0\right)\)

\(\left\{{}\begin{matrix}a^2-b^2=3-8x-4x+1\\2-6x=b-a\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\left(a-b\right)\left(a+b\right)=4-12x\\2-6x=b-a\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\left(a-b\right)\left(a+b\right)=2\left(2-6x\right)\\2-6x=b-a\end{matrix}\right.\)

=> \(\left(a+b\right)\left(a-b\right)=2\left(b-a\right)\)

<=> \(\left(a+b\right)\left(a-b\right)-2\left(b-a\right)=0\)

<=> \(\left(a-b\right)\left(a+b+2\right)=0\)

=> a-b=0(do a+b+2 >0 với \(a;b\ge0\))

<=> a=b <=> \(\sqrt{3-8x}=\sqrt{4x-1}\)<=> \(3-8x=4x-1\)

<=> \(3+1=4x+8x\)<=> \(4=12x\)

<=> \(x=\frac{1}{3}\)

Vậy pt (*) có tập nghiệm \(S=\left\{\frac{1}{3}\right\}\)

Nguyễn Minh Chiến
Xem chi tiết
Hồng Phúc
2 tháng 2 2021 lúc 17:08

1.

\(x^4-6x^2-12x-8=0\)

\(\Leftrightarrow x^4-2x^2+1-4x^2-12x-9=0\)

\(\Leftrightarrow\left(x^2-1\right)^2=\left(2x+3\right)^2\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-1=2x+3\\x^2-1=-2x-3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-4=0\\x^2+2x+2=0\end{matrix}\right.\)

\(\Leftrightarrow x=1\pm\sqrt{5}\)

Hồng Phúc
2 tháng 2 2021 lúc 17:22

3.

ĐK: \(x\ge-9\)

\(x^4-x^3-8x^2+9x-9+\left(x^2-x+1\right)\sqrt{x+9}=0\)

\(\Leftrightarrow\left(x^2-x+1\right)\left(\sqrt{x+9}+x^2-9\right)=0\)

\(\Leftrightarrow\sqrt{x+9}+x^2-9=0\left(1\right)\)

Đặt \(\sqrt{x+9}=t\left(t\ge0\right)\Rightarrow9=t^2-x\)

\(\left(1\right)\Leftrightarrow t+x^2+x-t^2=0\)

\(\Leftrightarrow\left(x+t\right)\left(x-t+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-t\\x=t-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\sqrt{x+9}\\x=\sqrt{x+9}-1\end{matrix}\right.\)

\(\Leftrightarrow...\)

Hồng Phúc
2 tháng 2 2021 lúc 17:14

2.

ĐK: \(x\ne\dfrac{2\pm\sqrt{2}}{2};x\ne\dfrac{-2\pm\sqrt{2}}{2}\)

\(\dfrac{x}{2x^2+4x+1}+\dfrac{x}{2x^2-4x+1}=\dfrac{3}{5}\)

\(\Leftrightarrow\dfrac{1}{2x+\dfrac{1}{x}+4}+\dfrac{1}{2x+\dfrac{1}{x}-4}=\dfrac{3}{5}\)

Đặt \(2x+\dfrac{1}{x}+4=a;2x+\dfrac{1}{x}-4=b\left(a,b\ne0\right)\)

\(pt\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{3}{5}\left(1\right)\)

Lại có \(a-b=8\Rightarrow a=b+8\), khi đó:

\(\left(1\right)\Leftrightarrow\dfrac{1}{b+8}+\dfrac{1}{b}=\dfrac{3}{5}\)

\(\Leftrightarrow\dfrac{2b+8}{\left(b+8\right)b}=\dfrac{3}{5}\)

\(\Leftrightarrow10b+40=3\left(b+8\right)b\)

\(\Leftrightarrow\left[{}\begin{matrix}b=2\\b=-\dfrac{20}{3}\end{matrix}\right.\)

TH1: \(b=2\Leftrightarrow...\)

TH2: \(b=-\dfrac{20}{3}\Leftrightarrow...\)

Lê Anh Ngọc
Xem chi tiết
Nguyễn Bá Minh Hiếu
1 tháng 9 2019 lúc 9:51

đặt a=\(\sqrt{3-8x}\) =>a2=3-8x(1)

b=\(\sqrt{4x-1}\)=>b2=4x-1(2)

Lấy (2) trừ (1) ta dc b2-a2=4(3x-1)

PT đầu bài <=> 6x-2 + \(\sqrt{4x-1}-\sqrt{3-8x}\)=0

<=> 12x-4+\(2\left(\sqrt{4x-1}-\sqrt{3-8x}\right)=0\)

<=>b2-a2+2b-2a=0 <=> (b-a)(b+a+2)=0

Vì a+b+2>2 =>a=b<=>\(\sqrt{3-8x}=\sqrt{4x-1}\)

<=>3-8x=4x-1 <=> 12x=4 <=> x=\(\frac{1}{3}\)

THE END (CON THỂ CHỌN ĐI!!!T CÒN KIẾM GP)