x^2=y^2-8y+3
1) x3+8
2)27-8y3
3)y6+1
4)64x3-1/8y3
5)125x6-27y9
6)-x6/125-y3/64
7)16x2(4x-y)-8y2(x+y)+xy(16x+8y)
1. x3 + 8 = (x + 2 )(x2 - x + 1)
2. 27 - 8y3 = ( 3 - 2y ) ( 9 + 6y + 4y2 )
3. y6 + 1 = (y2)3 + 1 = ( y2 + 1) ( y4 - y2 +1 )
4.64x3 - \(\dfrac{1}{8}\)y3 = ( 4x - \(\dfrac{1}{2}\)y ) ( 16x2 + 2xy + \(\dfrac{1}{4}\)y2)
5. 125x6 - 27y9 = (5x2)3 - (3y3)3
= ( 5x2 - 3y3)(25x4 +15x2y3 + 9y6)
@8y^3-8y^3/y^2-4x^2
B)x^3-x^2-x+1/1-x^3
Mk cần gấp mk hứa tick
\(\left\{{}\begin{matrix}\left(x+y\right)^2-\left(y^2-x\right)^3=6\left(x^2-x\right)-\left(y^2-y\right)\\8x^4+8y^4+8x^2+8y^2=9-16xy\left(x+y\right)\end{matrix}\right.\)
Help me giải hpt này với ạ
Giải hệ phương trình : \(\left\{{}\begin{matrix}\left(x^2+y\right)^3+\left(y^2+x\right)^3=6\left(x^2-x\right)-6\left(y^2-y\right)\\8x^4+8y^4+8x^2+8y^2=9-16xy\left(x+y\right)\end{matrix}\right.\)
Giải các hệ phương trình sau
\(1)\left\{{}\begin{matrix}\sqrt{x+1}=\sqrt{2}\left(8y^2+8y+1\right)\\4\left(x^3-8y^3\right)-6\left(x^2+4y^2\right)+3\left(x+2y\right)-1=0\end{matrix}\right.\)
\(2)\left\{{}\begin{matrix}3\sqrt{17x^2-y^2-6x+4}+x=6\sqrt{2x^2+x+y}-3y+2\\\sqrt{3x^2+xy+1}=\sqrt{x+1}\end{matrix}\right.\)
\(3)\left\{{}\begin{matrix}x^3+\left(2-y\right)x^2+\left(2-3y\right)x=5\left(x+1\right)\\3\sqrt{y+1}=3x^2-14x+14\end{matrix}\right.\)
\(4)\left\{{}\begin{matrix}4x^2=\left(\sqrt{x^2+1}+1\right)\left(x^2-y^3+3y-2\right)\\x^2+\left(y+1\right)^2=2\left(1+\dfrac{1-x^2}{y}\right)\end{matrix}\right.\)
\(5)\left\{{}\begin{matrix}7x^3+y^3+3xy\left(x-y\right)-12x^2+6x-1=0\\y^2+7y-17=9x+2\left(x+6\right)\sqrt{5-2y}\end{matrix}\right.\)
\(6)\left\{{}\begin{matrix}2x^2+3=4\left(x^2-2yx^2\right)\sqrt{3-2y}+\dfrac{4x^2+1}{x}\\\left(2x+1\right)\sqrt{2-\sqrt{3-2y}}=\sqrt[3]{2x^2+x^3}+x+2\end{matrix}\right.\)
giải hệ pt
a) 2(x-2)+3(1+y)=-2
3(x-2)+2(1+y)=-3
b) x/2-1/3=1
5x-8y=3
a: =>2x-4+3y+3=-2 và 3x-6+2y+2=-3
=>2x+3y=-2-3+4=-1 và 3x+2y=-3+6-2=1
=>x=1;y=-1
b: =>1/2x=4/3 và 5x-8y=3
=>x=4/3:1/2=4/3*2=8/3 và 8y=5x-3=5*8/3-3=40/3-3=31/3
=>y=31/24; x=8/3
tìm x,y : \(x^2=2y^2-8y+3\)
d) (x+1)^3-6y(x+1)^2+12y^2(x+1)-8y^3 tại x=2;y=1,5
e) (x-2)^3+3y(x-2)+3y^2(x-2)+y^3 tại x+y=7
\(d) (x+1)^3-6y(x+1)^2+12y^2(x+1)-8y^3\)
\(=\left(x+1\right)^3-3\cdot\left(x+1\right)^2\cdot2y+3\cdot\left(x+1\right)\cdot\left(2y\right)^2-\left(2y\right)^3\)
\(=\left[\left(x+1\right)-2y\right]^3\)
\(=\left(x-2y+1\right)^3\) (1)
Thay \(x=2;y=1,5\) vào (1), ta được:
\(\left(2-2\cdot1,5+1\right)^3\)
\(=\left(2-3+1\right)^3\)
\(=0\)
\(---\)
\(e,\left(x-2\right)^3+3y\left(x-2\right)^2+3y^2\left(x-2\right)+y^3\) (sửa đề)
\(=\left(x-2\right)^3+3\cdot\left(x-2\right)^2\cdot y+3\cdot\left(x-2\right)\cdot y^2+y^3\)
\(=\left[\left(x-2\right)+y\right]^3\)
\(=\left(x+y-2\right)^3\) (2)
Thay \(x+y=7\) vào (2), ta được:
\(\left(7-2\right)^3=5^3=125\)
#\(Toru\)
Lời giải:
Áp dụng hằng đẳng thức đáng nhớ:
d. $=[(x+1)-(2y)]^3=(2+1-2.1,5)^3=(3-3)^3=0$
e. Sửa đề: $(x-2)^3+3y(x-2)^2+3y^2(x-2)+y^3$
$=(x-2+y)^3=(x+y-2)^3=(7-2)^3=5^3=125$
Giai he phuong trinh
x(x+y)+can (x+y)=can (2y) [can(2y^3)+1]
8x^2-8y+2(x^3-y^3)+3=8y can(2x^3-3x+1)
tat ca deu la can bac hai
Giải hpt:
x^2 + y^2 − 3x + 4y = 1
3.x^2 − 2.y^2 − 9x − 8y = 3
Ta có hệ \(\hept{\begin{cases}x^2+y^2-3x+4y=1\\3x^2-2y^2-9x-8y=3\end{cases}\Leftrightarrow\hept{\begin{cases}3x^2+3y^2-9x+12y=3\left(1\right)\\3x^2-2y^2-9x-8y=3\left(2\right)\end{cases}}}\)
Lấy (1)-(2) ta có \(5y^2+20y=0\Leftrightarrow\orbr{\begin{cases}y=0\\y=-4\end{cases}}\)
Với \(y=0\Rightarrow x^2-3x-1=0\Leftrightarrow\orbr{\begin{cases}x=\frac{3+\sqrt{13}}{2}\\x=\frac{3-\sqrt{13}}{2}\end{cases}}\)
Với \(y=-4\Rightarrow x^2-3x-1=0\Leftrightarrow\orbr{\begin{cases}x=\frac{3+\sqrt{13}}{2}\\x=\frac{3-\sqrt{13}}{2}\end{cases}}\)
Vậy hệ có 4 nghiệm \(\left(x;y\right)=\left(0;\frac{3+\sqrt{13}}{2}\right);\left(0;\frac{3-\sqrt{13}}{2}\right);\left(-4;\frac{3+\sqrt{13}}{2}\right);\left(-4;\frac{3-\sqrt{13}}{2}\right)\)