Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
biii
Xem chi tiết
Uyên Phạm
15 tháng 3 2021 lúc 21:06

undefined

Nhi Quỳnh
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 12 2023 lúc 13:17

a: ĐKXĐ: \(\left\{{}\begin{matrix}2x-3>=0\\x-1>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>=\dfrac{3}{2}\\x>1\end{matrix}\right.\Leftrightarrow x>=\dfrac{3}{2}\)

\(\dfrac{\sqrt{2x-3}}{\sqrt{x-1}}=2\)

=>\(\sqrt{\dfrac{2x-3}{x-1}}=2\)

=>\(\dfrac{2x-3}{x-1}=4\)

=>4(x-1)=2x-3

=>4x-4=2x-3

=>4x-2x=-3+4

=>2x=1

=>\(x=\dfrac{1}{2}\left(loại\right)\)

b: ĐKXĐ: 2x+15>=0

=>x>=-15/2

\(x+\sqrt{2x+15}=0\)

=>\(\sqrt{2x+5}=-x\)

=>\(\left\{{}\begin{matrix}-x>=0\\\left(-x\right)^2=2x+5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{15}{2}< =x< =0\\x^2-2x-5=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-\dfrac{15}{2}< =x< =0\\\left(x-1\right)^2=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{15}{2}< =x< =0\\\left[{}\begin{matrix}x-1=\sqrt{6}\\x-1=-\sqrt{6}\end{matrix}\right.\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-\dfrac{15}{2}< =x< =0\\\left[{}\begin{matrix}x=\sqrt{6}+1\left(loại\right)\\x=-\sqrt{6}+1\left(nhận\right)\end{matrix}\right.\end{matrix}\right.\)

Lê Hương Giang
Xem chi tiết
Yeutoanhoc
28 tháng 6 2021 lúc 20:32

a)ĐK:\(\begin{cases}25x^2-9 \ge 0\\5x+3 \ge 0\\\end{cases}\)

`<=>` \(\begin{cases}(5x-3)(5x+3) \ge 0\\5x+3 \ge 0\\\end{cases}\)

`<=>` \(\begin{cases}\left[ \begin{array}{l}x\ge \dfrac35\\x \le -\dfrac35\end{array} \right.\\\end{cases}\)

`<=>` \(\left[ \begin{array}{l}x=-\dfrac35\\x \ge \dfrac35\end{array} \right.\)

`pt<=>\sqrt{5x+3}(\sqrt{5x-3}-2)=0`

`<=>` \(\left[ \begin{array}{l}5x+3=0\\\sqrt{5x-3}=2\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}x=-\dfrac35\\5x-3=4\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}x=-\dfrac35\\x=7/5\end{array} \right.\) 

`b)sqrt{x-3}/sqrt{2x+1}=2`

ĐK:\(\begin{cases}x-3 \ge 0\\2x+1>0\\\end{cases}\)

`<=>x>=3`

`pt<=>sqrt{x-3}=2sqrt{2x+1}`

`<=>x-3=8x+4`

`<=>7x=7`

`<=>x=1(l)`

`c)sqrt{x^2-2x+1}+sqrt{x^2-4x+4}=3`

`<=>sqrt{(x-1)^2}+sqrt{(x-2)^2}=3`

`<=>|x-1|+|x-2|=3`

`**x>=2`

`pt<=>x-1+x-2=3`

`<=>2x=6`

`<=>x=3(tm)`

`**x<=1`

`pt<=>1-x+2-x=3`

`<=>3-x=3`

`<=>x=0(tm)`

`**1<=x<=2`

`pt<=>x-1+2-x=3`

`<=>=-1=3` vô lý

Vậy `S={0,3}`

Bích Lê
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 4 2022 lúc 19:43

a.

\(3\sqrt{-x^2+x+6}\ge2\left(1-2x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}-x^2+x+6\ge0\\1-2x< 0\end{matrix}\right.\\\left\{{}\begin{matrix}1-2x\ge0\\9\left(-x^2+x+6\right)\ge4\left(1-2x\right)^2\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}-2\le x\le3\\x>\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\25\left(x^2-x-2\right)\le0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}< x\le3\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\-1\le x\le2\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow-1\le x\le3\)

Nguyễn Việt Lâm
16 tháng 4 2022 lúc 19:48

b.

ĐKXĐ: \(x\ge0\)

\(\Leftrightarrow\sqrt{2x^2+8x+5}-4\sqrt{x}+\sqrt{2x^2-4x+5}-2\sqrt{x}=0\)

\(\Leftrightarrow\dfrac{2x^2+8x+5-16x}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{2x^2-4x+5-4x}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)

\(\Leftrightarrow\dfrac{2x^2-8x+5}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{2x^2-8x+5}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)

\(\Leftrightarrow\left(2x^2-8x+5\right)\left(\dfrac{1}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{1}{\sqrt{2x^2-4x+5}+2\sqrt{x}}\right)=0\)

\(\Leftrightarrow2x^2-8x+5=0\)

\(\Leftrightarrow x=\dfrac{4\pm\sqrt{6}}{2}\)

Nguyễn Việt Lâm
16 tháng 4 2022 lúc 19:52

Câu b còn 1 cách giải nữa:

Với \(x=0\) không phải nghiệm

Với \(x>0\) , chia 2 vế cho \(\sqrt{x}\) ta được:

\(\sqrt{2x+8+\dfrac{5}{x}}+\sqrt{2x-4+\dfrac{5}{x}}=6\)

Đặt \(\sqrt{2x-4+\dfrac{5}{x}}=t>0\Leftrightarrow2x+8+\dfrac{5}{x}=t^2+12\)

Phương trình trở thành:

\(\sqrt{t^2+12}+t=6\)

\(\Leftrightarrow\sqrt{t^2+12}=6-t\)

\(\Leftrightarrow\left\{{}\begin{matrix}6-t\ge0\\t^2+12=\left(6-t\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\le6\\12t=24\end{matrix}\right.\)

\(\Rightarrow t=2\)

\(\Rightarrow\sqrt{2x-4+\dfrac{5}{x}}=2\)

\(\Leftrightarrow2x-4+\dfrac{5}{x}=4\)

\(\Rightarrow2x^2-8x+5=0\)

\(\Leftrightarrow...\)

Phượng Dương Thị
Xem chi tiết
Nguyễn Đức Trí
15 tháng 7 2023 lúc 23:32

1) \(\sqrt[]{3x+7}-5< 0\)

\(\Leftrightarrow\sqrt[]{3x+7}< 5\)

\(\Leftrightarrow3x+7\ge0\cap3x+7< 25\)

\(\Leftrightarrow x\ge-\dfrac{7}{3}\cap x< 6\)

\(\Leftrightarrow-\dfrac{7}{3}\le x< 6\)

Mai Thị Thúy
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 7 2021 lúc 12:58

a.

ĐKXĐ: \(x\ge3\)

(Tốt nhất bạn kiểm tra lại đề cái căn đầu tiên của \(\sqrt{x-3}\) là căn bậc 2 hay căn bậc 3). Vì nhìn ĐKXĐ thì thấy căn bậc 2 là không hợp lý rồi đó

Pt tương đương:

\(\sqrt{x-3}+\sqrt[3]{x^2+1}+\left(x+1\right)\left(x-2\right)=0\)

Do \(x\ge3\Rightarrow x-2>0\Rightarrow\left(x+1\right)\left(x-2\right)>0\)

\(\Rightarrow\sqrt{x-3}+\sqrt[3]{x^2+1}+\left(x+1\right)\left(x-2\right)>0\)

Pt vô nghiệm

Nguyễn Việt Lâm
20 tháng 7 2021 lúc 12:58

b.

ĐKXĐ: \(x\ge-\dfrac{3}{2}\)

Pt: \(2x+3-\sqrt{2x+3}-\left(4x^2-6x+2\right)=0\)

Đặt \(\sqrt{2x+3}=t\ge0\) ta được:

\(t^2-t-\left(4x^2-6x+2\right)=0\)

\(\Delta=1+4\left(4x^2-6x+2\right)=\left(4x-3\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}t_1=\dfrac{1+4x-3}{2}=2x-1\\t_2=\dfrac{1-4x+3}{2}=2-2x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2x+3}=2x-1\left(x\ge\dfrac{1}{2}\right)\\\sqrt{2x+3}=2-2x\left(x\le1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+3=4x^2-4x+1\left(x\ge\dfrac{1}{2}\right)\\2x+3=4x^2-8x+4\left(x\le1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3+\sqrt{17}}{4}\\x=\dfrac{5-\sqrt{21}}{4}\end{matrix}\right.\)

Nguyễn Việt Lâm
20 tháng 7 2021 lúc 13:04

c.

ĐKXĐ: \(x\ge-1\)

\(\Leftrightarrow2\left(x^2-4x+4\right)+2\left(x+1\right)-5\left(x-2\right)\sqrt{x+1}=0\)

\(\Leftrightarrow2\left(x-2\right)^2-5\left(x-2\right)\sqrt{x+1}+2\left(x+1\right)=0\)

Đặt \(\left\{{}\begin{matrix}x-2=a\\\sqrt{x+1}=b\end{matrix}\right.\) ta được:

\(2a^2-5ab+2b^2=0\)

\(\Leftrightarrow\left(a-2b\right)\left(2a-b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=2b\\2a=b\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2\sqrt{x+1}=x-2\left(x\ge2\right)\\\sqrt{x+1}=2x-4\left(x\ge2\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4x+4=x^2-4x+4\\x+1=4x^2-16x+16\end{matrix}\right.\) (\(x\ge2\))

\(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=3\end{matrix}\right.\) (đã loại nghiệm)

Minh Anh
Xem chi tiết
Tran Nguyen Linh Chi
Xem chi tiết
Adu vip
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 7 2021 lúc 21:42

Ta có: \(\sqrt{2x-2+2\sqrt{2x-3}+\sqrt{2x+13+8\sqrt{2x-3}}}=5\)

\(\Leftrightarrow\sqrt{2x-2+2\sqrt{2x-3}+2\sqrt{2x-3}+4}=5\)

\(\Leftrightarrow\sqrt{2x+2+4\sqrt{2x-3}}=5\)

\(\Leftrightarrow\sqrt{2x-3+2\cdot\sqrt{2x-3}\cdot2+4+1}=5\)

\(\Leftrightarrow\left(\sqrt{2x-3}+2\right)^2+1=25\)

\(\Leftrightarrow\left(\sqrt{2x-3}+2\right)^2=24\)

\(\Leftrightarrow\sqrt{2x-3}+2=2\sqrt{6}\)

\(\Leftrightarrow2x-3=\left(2\sqrt{6}-2\right)^2\)

\(\Leftrightarrow2x-3=28-8\sqrt{6}\)

\(\Leftrightarrow2x=31-8\sqrt{6}\)

hay \(x=\dfrac{31-8\sqrt{6}}{2}\)

Trên con đường thành côn...
15 tháng 7 2021 lúc 21:44

undefinedundefined

Adu vip
Xem chi tiết
Yeutoanhoc
16 tháng 7 2021 lúc 8:50

`\sqrt{2x-2+2\sqrt{2x-3}}+\sqrt{2x+13+8sqrt{2x-3}}=5(x>=3/2)`

`<=>\sqrt{2x-3+2\sqrt{2x-3}+1}+\sqrt{2x-3+8\sqrt{2x-3}+16}=5`

`<=>\sqrt{(\sqrt{2x-3}+1)^2}+\sqrt{(\sqrt{2x-3}+4)^2}=5`

`<=>\sqrt{2x-3}+1+\sqrt{2x-3}+4=5`

`<=>2\sqrt{2x-3}=0`

`<=>\sqrt{2x-3}=0<=>2x-3=0<=>x=3/2(tmdk)`

Vậy `S={3/2}`