Tìm x, y, biết: \(\left(2018x+3y+1\right).\left(2018^x+2018x+y\right)=225\)
(2018x+3y+1)(2018x+2018x+y) =225
Gợi ý nhé bạn:
Xét x lớn hơn hoặc bằng 1
Ta có
2018x+2018x+y\(\ge\)2018+2018+y >225
=> vô lí
=> x=0
Xét x=0 vào biểu thức trên
Tính các giá trị biểu thức sau:
a) \(A=x^5-2018x^4+2018x^3-2018x^2+2018x-2019\) biết x=2017
b) \(B=2x^5+5y^3+4\) tại x,y thỏa mãn \(\left(x+1\right)^{20}+\left(y+2\right)^{30}=0\)
a)\(A=x^5-2018x^4+2018x^3-2018x^2+2018x-2019\)
\(A=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x-2019\)
\(A=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x-2019\)
\(A=x-2019=2017-2019=-2\)
b)ta có:\(\left(x+1\right)^{20}+\left(y+2\right)^{30}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-2\end{matrix}\right.\)
Thay vào \(\Rightarrow B=2\cdot\left(-1\right)^5+5\cdot\left(-2\right)^3+4\)
\(B=-2+\left(-40\right)+4=-38\)
thục hiền đc đó thục hiền ak nay vẫn hoc24 bình thường à
Ta có x=2017 => 2018 = x+1 ; 2019= x+2
thay vào ta có : \(A=x^5-\left(x+1\right).x^4+\left(x+1\right).x^3-\left(x+1\right).x^2+\left(x+1\right).x-\left(x+2\right)\) \(=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^x+x-x-2\) \(=\left(x^5-x^5\right)+\left(-x^4+x^4^{ }\right)+\left(x^3-x^3\right)+\left(-x^2+x^2\right)+\left(x-x\right)-2\)=-2
ey học tốt nhá
Tính: a)
\(\dfrac{x^2-8x-5\sqrt{x^2-8x+10}+14}{\left(x+1\right)\left(\left(4+\sqrt{22}\right)—x\right)}\)= 0
b) \(\left\{{}\begin{matrix}x+108y=200\\100x-87y=113\end{matrix}\right.\). Tính \(\left(x^2-3y^2\right)^{2018}\).
c) \(\left\{{}\begin{matrix}x^2-y^2=0\\2018x+y=2019\end{matrix}\right.\)
1.a.x\(^2-3x+xy-3y\)
b.\(16\left(2x+3\right)^2-9\left(5x-2\right)^2\)
2.tìm x biết
a.2018x-1+2019x(1-2018x)=0
b.(x+2)\(^3-x^2\left(x-6\right)-4\)
1.Tìm x y thuộc Z biết:
\(\left(x-1\right)^2+2\left(y-3\right)^2=3\)
2. Tìm x biết:
\(\left|x+1\right|+\left|x+2\right|+\left|x+3\right|+....+\left|x+2019\right|=2018x\)
Bài 1:
Vì \((x-1)^2\geq 0, \forall x\in\mathbb{Z}\Rightarrow 2(y-3)^2=3-(x-1)^2\leq 3\)
\(\Rightarrow (y-3)^2\leq \frac{3}{2}\)
Mà \((y-3)^2\geq 0; (y-3)^2\in\mathbb{Z}\) nên \(\left[\begin{matrix} (y-3)^2=0\\ (y-3)^2=1\end{matrix}\right.\)
Nếu \((y-3)^2=0\):
\((x-1)^2=3-2(y-3)^2=3\) (vô lý với $x$ nguyên)
Nếu \((y-3)^2=1\Rightarrow y-3=\pm 1\Rightarrow \left[\begin{matrix} y=4\\ y=2\end{matrix}\right.\)
\((x-1)^2=3-2(y-3)^2=3-2=1\Rightarrow x-1=\pm 1\Rightarrow \left[\begin{matrix} x=0\\ x=2\end{matrix}\right.\)
Vậy \((x,y)=(0,4); (0,2); (2,4); (2,2)\)
Bài 2:
Dễ thấy vế trái của đẳng thức đã cho không âm (tính chất trị tuyệt đối)
\(\Rightarrow 2018x=\text{VT}\geq 0\Rightarrow x\geq 0\)
\(\Rightarrow \left\{\begin{matrix} |x+1|=x+1\\ |x+2|=x+2\\ |x+3|=x+3\\ ....\\ |x+2019|=x+2019\end{matrix}\right.\)
Phương trình trở thành:
\((x+1)+(x+2)+(x+3)+....+(x+2019)=2018x\)
\(\Leftrightarrow 2019x+2029095=2018x\)
\(\Leftrightarrow x=-2029095< 0\) (vô lý- loại)
Vậy không tồn tại $x$ thỏa mãn.
cho các số dương x,y Thỏa \(\sqrt{x^2+2018}-2y=\sqrt{y^2+2018}-2x\)
Tính giá trị của biểu thức A= \(\left(x-y\right)^{2018}-2018x-2018y+181218\)
a) Cho các số nguyên dương x, y nguyên tố cùng nhau. Chứng minh rằng phân số \(\frac{a}{b}=\frac{x\left(2017+y\right)}{2018x+y}\)tối giản
b) Cho \(P=\frac{2018^{100}+2018^{96}+2018^{92}+...+2018^4+1}{2018^{102}+2018^{100}+2018^{98}+...+2018^2+1}\). Chứng minh rằng \(4P< \left(0,1\right)^6\)
Cho x = 2017. Tính giá trị của đa thức
\(P\left(x\right)=x^{2017}-2018x^{2017}+2018x^{2016}-2018x^{2015}+...+2018x^2-2018x+1\)
\(P\left(x\right)=x^{2017}-2018x^{2017}+2018x^{2016}-...-2018x+1\)
Vì \(x=2017\)
\(\Leftrightarrow x+1=2018\)
Thay vào P(x) ta được :
\(P\left(x\right)=x^{2017}-x^{2017}\left(x+1\right)+x^{2016}\left(x+1\right)-...-x\left(x+1\right)+1\)
\(P\left(x\right)=x^{2017}-x^{2018}-x^{2017}+x^{2017}+x^{2016}-...-x^2-x+1\)
\(P\left(x\right)=-x^{2018}+1\)
\(P\left(x\right)=-2017^{2018}+1\)
phân tích đa thức thành nhân tử :
a , \(\left(2x^2+x-2\right)\left(2x^2+x-3\right)-12\)
b , \(x^2+9y^2-9y-3x+6xy+2\)
c , \(x^2+2xy+y^2-x-y-12\)
d , \(\left(5x^2-2x\right)^2+2x-5x^2-6\)
e , \(x^4+2018x^2-2017x+2018\)
f , \(x^4+2018x^2+2017x+2018\)
g , \(x^4-30x^2+31x-30\)
h , \(x^2+4xy+2x+3y^2+6y\)
i , \(x^2+2y^2-3xy+x-2y\)
Câu c) Sử dụng hằng đẳng thức+Đặt biến phụ
Ta có: \(x^2+2xy+y^2-x-y-12\)
\(=\left(x+y\right)^2-\left(x+y\right)-12\)
\(=\left(x+y\right)\left(x+y-1\right)-12\)
Đặt: \(x+y=t\)
\(=t\left(t-1\right)-12\)
\(=t^2-t-12\)
\(=t^2-t-9-3\)
\(=\left(t^2-3^2\right)-\left(t+3\right)\)
\(=\left(t+3\right)\left(t-3\right)-\left(t+3\right)\)
\(=\left(t+3\right)\left(t-4\right)\)Bn tự thế vào nhá. (Bài c) tương tự bài a))
Câu d) Đặt biến phụ
Ta có: \(\left(5x^2-2x\right)^2+2x-5x^2-6\)
\(=\left(5x^2-2x\right)^2-5x^2+2x-6\)
\(=\left(5x^2-2x\right)^2-\left(5x^2-2x\right)-6\)
\(=\left(5x^2-2x\right)\left(5x^2-2x-1\right)-6\)
Đặt \(t=5x^2-2x\)
\(=t\left(t-1\right)-6\)
\(=t^2-t-6\)
\(=t^2-t-9+3\)
\(=\left(t^2-3^2\right)-\left(t-3\right)\)
\(=\left(t-3\right)\left(t+3\right)-\left(t-3\right)\)
\(=\left(t-3\right)\left(t+2\right)\)Bn tự thế t vào
Câu a) Sử dụng phương pháp đặt biến phụ+hằng đẳng thức
Ta có: \(\left(2x^2+x-2\right)\left(2x^2+x-3\right)-12\)
Đặt: \(t=2x^2+x-2\)
\(=t\left(t-1\right)-12\)
\(=t^2-t-12=t^2-t-9-3\)
\(=\left(t^2-3^2\right)-\left(t+3\right)\)
\(\left(t+3\right)\left(t-3\right)-\left(t+3\right)=\left(t+3\right)\left(t-4\right)\)
Thay t vào: \(\left(2x^2+x+1\right)\left(2x^2+x-6\right)\)
Câu b) Sử dụng hằng đẳng thức+ đặt biến phụ
Ta có: \(x^2+9y^2-9y-3x+6xy+2\)
\(=\left(x^2+6xy+9y^2\right)-\left(9y+3x\right)+2\)
\(=\left(x+3y\right)^2-3\left(3y+x\right)+2\)
\(=\left(x+3y\right)\left(x+3y-3\right)+2\)
Đặt \(t=x+3y\)
\(=t\left(t-3\right)+2\)
\(=t^2-3t+2\)
\(=\left(t^2-4\right)-\left(3t-6\right)\)
\(=\left(t-2\right)\left(t+2\right)-3\left(t-2\right)\)
\(=\left(t-2\right)\left(t-1\right)\)Khúc sau bn tự thế vào
Còn mấy bài sau đang nghiên cứu
f) Câu nầy suy nghĩ muốn chết mới ra
Ta có: \(x^4+2018x^2+2017x+2018\)
\(=\left(x^4-x\right)+\left(2018x^2+2018x+2018\right)\)
\(=x\left(x^3-1\right)+2018\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2018\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2018\right)\)
e) Tương tự như câu f)
Ta có: \(x^4+2018x^2-2017x+2018\)
\(=\left(x^4+x\right)\left(2018x^2-2018+2018\right)\)
\(=x\left(x^3+1\right)+2018\left(x^2-x+1\right)\)
\(=x\left(x+1\right)\left(x^2-x+1\right)+2018\left(x^2-x+1\right)\)
\(=\left(x^2-x+1\right)\left(x^2+x+2018\right)\)
g) Tương tự như hai câu trên
Ta có: \(x^4-30x^2+31x-30\)
\(=x^4-30x^2+30x+x-30\)
\(=\left(x^4+x\right)-\left(30x^2-30x+30\right)\)
\(=x\left(x^3+1\right)-30\left(x^2-x+1\right)\)
\(=x\left(x+1\right)\left(x^2-x+1\right)-30\left(x^2-x+1\right)\)
\(=\left(x^2-x+1\right)\left(x^2+x-30\right)\)