1) giải phương trình
a)\(\sqrt{x+9}=7\)
b) \(\sqrt{x-4}=4-x\)
c) \(\sqrt{x^2-12x+36}=81\)
giúp mk vs ah
2) giải pt
3) \(\sqrt{4x+1}=x+1\)
4) \(2\sqrt{x-1}+\dfrac{1}{3}\sqrt{9x-9}=15\)
5) \(\sqrt{4x^2-12x+9}=7\)
6) \(5\sqrt{9x-9}-\sqrt{4x-4}-\sqrt{x-1}=36\)
giúp mk vs ah
3: Ta có: \(\sqrt{4x+1}=x+1\)
\(\Leftrightarrow x^2+2x+1=4x+1\)
\(\Leftrightarrow x\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=2\left(nhận\right)\end{matrix}\right.\)
4: Ta có: \(2\sqrt{x-1}+\dfrac{1}{3}\sqrt{9x-9}=15\)
\(\Leftrightarrow3\sqrt{x-1}=15\)
\(\Leftrightarrow x-1=25\)
hay x=26
5: Ta có: \(\sqrt{4x^2-12x+9}=7\)
\(\Leftrightarrow\left|2x-3\right|=7\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=7\\2x-3=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=10\\2x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
bài 1:giải phương trình
a)\(\sqrt{9x^2+12x+4}-4\) = 0
b)\(3\sqrt{x+3}-\sqrt{x-5}\) = 0
c)\(x-7+\sqrt{x-1}\) = 0
giải cụ thể chi tiết giúp mk vớiiiiii ạ
a: \(\Leftrightarrow\left[{}\begin{matrix}3x+2=4\\3x+2=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-2\end{matrix}\right.\)
GIẢI PHƯƠNG TRÌNH
a) \(\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\sqrt{9x-18}+6\sqrt{\dfrac{x-2}{81}}=-4\)
b) \(\sqrt{9x^2+12x+4}=4x\)
c) \(\sqrt{9x-18}-\sqrt{4x-8}+3\sqrt{x-2}=40\)
d) \(\sqrt{5x-6}-3=0\)
a: \(\Leftrightarrow\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\cdot3\sqrt{x-2}+6\cdot\dfrac{\sqrt{x-2}}{9}=-4\)
\(\Leftrightarrow\sqrt{x-2}=4\)
=>x-2=16
hay x=18
b: \(\Leftrightarrow\left|3x+2\right|=4x\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+2=4x\left(x>=-\dfrac{2}{3}\right)\\3x+2=-4x\left(x< -\dfrac{2}{3}\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(nhận\right)\\x=-\dfrac{2}{7}\left(nhận\right)\end{matrix}\right.\)
c: \(\Leftrightarrow3\sqrt{x-2}-2\sqrt{x-2}+3\sqrt{x-2}=40\)
\(\Leftrightarrow4\sqrt{x-2}=40\)
=>x-2=100
hay x=102
d: =>5x-6=9
hay x=3
\(a,\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\sqrt{9x-18}+6\sqrt{\dfrac{x-2}{81}}=-4\left(dk:x\ge2\right)\)
\(\Leftrightarrow\dfrac{1}{3}\sqrt{x-2}-2\sqrt{x-2}+\dfrac{2}{3}\sqrt{x-2}=-4\)
\(\Leftrightarrow\sqrt{x-2}=4\)
\(\Leftrightarrow x-2=16\)
\(\Leftrightarrow x=18\left(tmdk\right)\)
b,\(\sqrt{9x^2-12x+4=3x\left(dk:x\ge0\right)}\)
\(\Leftrightarrow\sqrt{\left(3x-2\right)^2}=3x\)
\(\Leftrightarrow\left|3x-2\right|=3x\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x-2=3x\\3x-2=-3x\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x\in\varnothing\\x=\dfrac{1}{3}\left(tmdk\right)\end{matrix}\right.\)
Các câu còn lại làm tương tự nhé
\(\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\sqrt{9x-18}+6\sqrt{\dfrac{x-2}{81}}=-4\) (đk: x≥2)
\(\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\sqrt{9\left(x-2\right)}+6\sqrt{\dfrac{1}{81}\left(x-2\right)}=-4\)
\(\dfrac{1}{3}\sqrt{x-2}-2\sqrt{x-2}+\dfrac{2}{3}\sqrt{x-2}=-4\)
\(\dfrac{1}{3}\sqrt{x-2}-\dfrac{4}{3}\sqrt{x-2}=-4\)
\(-\sqrt{x-2}=-4\)
\(\sqrt{x-2}=4\)
\(\left|x-2\right|=16\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=16\\x-2=-16\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=18\left(TM\right)\\x=-14\left(L\right)\end{matrix}\right.\)
Giải phương trình
a,\(\sqrt{4-3x}=8\)
b,\(\sqrt{4x-8}-12\sqrt{\dfrac{x-2}{9}}=-1\)
c,\(\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)=7\)
a: Ta có: \(\sqrt{4-3x}=8\)
\(\Leftrightarrow4-3x=64\)
\(\Leftrightarrow3x=-60\)
hay x=-20
b: ta có: \(\sqrt{4x-8}-12\sqrt{\dfrac{x-2}{9}}=-1\)
\(\Leftrightarrow2\sqrt{x-2}-12\cdot\dfrac{\sqrt{x-2}}{3}=-1\)
\(\Leftrightarrow x-2=\dfrac{1}{4}\)
hay \(x=\dfrac{9}{4}\)
\(\left\{{}\begin{matrix}8>0\left(luondung\right)\\4-3x=64\end{matrix}\right.\) \(\Leftrightarrow x=-20\left(ktm\right)\)
2) giải pt
a) \(\sqrt{4-2x}=5\)
b) \(\sqrt{25\left(x+1\right)}+\sqrt{9x+9}=16\)
c) \(\sqrt{4x^2+12x+9}=4\)
giúp mk vs ạ mk cần gấp
a) ĐKXĐ: x <= 2
pt --> 4 - 2x = 25 <=> x = -21/2 (thỏa)
b) ĐKXĐ: x >= -1
pt <=> 8sqrt(x + 1)=16 <=> sqrt(x+1)=2 --> x + 1 = 4 <=> x = 3
(2) giải pt:
a) \(\sqrt{4-2x}=5\)
b) \(\sqrt{25\left(x+1\right)}+\sqrt{9x+9}=16\)
\(\sqrt{4x^2+12x+9}=4\)
giúp mk vs ạ mai mk hc rồi
a, ĐKXĐ: \(x\le2\)
\(\sqrt{4-2x}=5\\ \Leftrightarrow4-2x=25\\ \Leftrightarrow2x=-21\\ \Leftrightarrow x=-10,5\left(tm\right)\)
b, ĐKXĐ: \(x\ge-1\)
\(\sqrt{25\left(x+1\right)}+\sqrt{9x+9}=16\\ \Leftrightarrow5\sqrt{x+1}+\sqrt{9\left(x+1\right)}=16\\ \Leftrightarrow5\sqrt{x+1}+3\sqrt{x+1}=16\\ \Leftrightarrow8\sqrt{x+1}=16\\ \Leftrightarrow\sqrt{x+1}=2\\ \Leftrightarrow x+1=4\\ \Leftrightarrow x=3\)
c, \(\sqrt{4x^2+12x+9}=4\Leftrightarrow4x^2+12x+9=16\\ \Leftrightarrow4x^2+12x-7=0\\ \Leftrightarrow\left(4x^2-2x\right)+\left(14x-7\right)=0\\ \Leftrightarrow2x\left(2x-1\right)+7\left(2x-1\right)=0\\ \Leftrightarrow\left(2x-1\right)\left(2x+7\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)
a: \(\Leftrightarrow4-2x=25\)
hay \(x=-\dfrac{21}{2}\)
c: \(\Leftrightarrow\left|2x+3\right|=4\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+3=4\\2x+3=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)
Giải phương trình:
a) \(\sqrt{x+9=7}\)
b) \(\sqrt{x^2-12x+36=81}\)
c) \(\sqrt{x-1}=4\)
a)\(\sqrt{x+9}=7\)
Đk:\(x\ge-9\).Bình phương 2 vế của pt ta có:
\(\sqrt{\left(x+9\right)^2}=7^2\)\(\Leftrightarrow x+9=49\Leftrightarrow x=40\)
b)\(\sqrt{x^2-12x+36}=81\)
Đk:\(x\ge6\)
\(\Leftrightarrow\sqrt{\left(x-6\right)^2}=81\)
\(\Leftrightarrow x-6=81\Leftrightarrow x=87\)
c)\(\sqrt{x-1}=4\)
Đk:\(x\ge1\).Bình phương 2 vế của pt ta có:
\(\sqrt{\left(x-1\right)^2}=4^2\)
\(\Leftrightarrow x-1=16\Leftrightarrow x=17\)
Giải các phương trình (giải chi tiết):
a) \(\sqrt{3x}-5\sqrt{12x}+7\sqrt{27x}=12\)
b) \(5\sqrt{9x+9}-2\sqrt{4x+4}+\sqrt{x+1}=36\)
`a)\sqrt{3x}-5\sqrt{12x}+7\sqrt{27x}=12` `ĐK: x >= 0`
`<=>\sqrt{3x}-10\sqrt{3x}+21\sqrt{3x}=12`
`<=>12\sqrt{3x}=12`
`<=>\sqrt{3x}=1`
`<=>3x=1<=>x=1/3` (t/m)
`b)5\sqrt{9x+9}-2\sqrt{4x+4}+\sqrt{x+1}=36` `ĐK: x >= -1`
`<=>15\sqrt{x+1}-4\sqrt{x+1}+\sqrt{x+1}=36`
`<=>12\sqrt{x+1}=36`
`<=>\sqrt{x+1}=3`
`<=>x+1=9`
`<=>x=8` (t/m)
a)Tính: \(\sqrt{\sqrt{2}-1}+\sqrt{\sqrt{2}+1}-\sqrt{2\sqrt{2}+2}\)
b)Giải phương trình sau :\(\sqrt{x^2-12x+36}=81\)
c)Giải phương trình sau : \(\sqrt{4x^2-12x+9}=7\)
a/ \(=\sqrt{\sqrt{2}-1}-\left(\sqrt{2}-1\right)\sqrt{\sqrt{2}+1}\)
\(=\sqrt{\sqrt{2}-1}\left(1-\sqrt{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}\right)\)
\(=2\sqrt{\sqrt{2}-1}\)
b/ \(\Leftrightarrow x^2-12x+36=6561\)
\(\Leftrightarrow x^2-12x-6525=0\)
\(\Leftrightarrow\left(x-87\right)\left(x+75\right)=0\Rightarrow\left[{}\begin{matrix}x=87\\x=-75\end{matrix}\right.\)
c/ \(\Leftrightarrow4x^2-12x+9=49\)
\(\Leftrightarrow4x^2-12x-40=0\)
\(\Rightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
Hai câu b; c đều có thể giải bằng cách sử dụng hằng đẳng thức, nhưng cần phá trị tuyệt đối tốn thời gian, tốt nhất là bình phương cho lẹ
\(\sqrt{\sqrt{2}-1}+\sqrt{\sqrt{2}+1}-\sqrt{2\sqrt{2}+2}\)
\(Đat:A=\sqrt{\sqrt{2}-1}+\sqrt{\sqrt{2}+1}\Rightarrow A^2=\sqrt{2}-1+\sqrt{2}+1+2\sqrt{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}=2\sqrt{2}+2=2\left(\sqrt{2}+1\right)\Rightarrow A=\sqrt{2\sqrt{2}+2}\left(vì:\sqrt{\sqrt{2}-1};\sqrt{\sqrt{2}+1}>0\right)\) \(\Rightarrow\sqrt{\sqrt{2}-1}+\sqrt{\sqrt{2}+1}-\sqrt{2\sqrt{2}+2}=\sqrt{2\sqrt{2}+2}-\sqrt{2\sqrt{2}+2}=0\)
\(b,\sqrt{x^2-12x+36}=\sqrt{\left(x-6\right)^2}=\left|x-6\right|=81\Leftrightarrow\left[{}\begin{matrix}x-6=81\\x-6=-81\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=87\\x=-75\end{matrix}\right..Vậy:x\in\left\{87;-75\right\}\)
\(c,\sqrt{4x^2-12x+9}=\sqrt{\left(2x-3\right)^2}=7\Leftrightarrow\left|2x-3\right|=7\Leftrightarrow\left[{}\begin{matrix}2x-3=-7\\2x-3=7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-4\\2x=10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=5\end{matrix}\right..Vậy:x\in\left\{-2;5\right\}\)