Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Big City Boy
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 12 2020 lúc 19:57

\(x+y+z=xyz\Leftrightarrow\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\)

\(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}=\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2-2\left(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}\right)=2^2-2.1=2\) (đpcm)

dbrby
Xem chi tiết
 Mashiro Shiina
5 tháng 12 2018 lúc 13:15

\(\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}\)

\(=x.\left(\dfrac{x}{y+z}+1-1\right)+y.\left(\dfrac{y}{x+z}+1-1\right)+z.\left(\dfrac{z}{x+y}+1-1\right)\)

\(=x.\left(\dfrac{x+y+z}{y+z}\right)+y.\left(\dfrac{x+y+z}{x+z}\right)+z.\left(\dfrac{x+y+z}{x+y}\right)-\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}\right)-\left(x+y+z\right)=\left(x+y+z\right)-\left(x+y+z\right)=0\)

Hồ Minh Phi
Xem chi tiết
NBH Productions
14 tháng 12 2018 lúc 20:41

\(\sum\dfrac{1}{x}\cdot\sum\dfrac{x}{y^2}\ge\sum^2\dfrac{1}{x}\)(bunhia)

Hồ Minh Phi
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 12 2018 lúc 23:02

\(VT=\dfrac{\left(\dfrac{1}{z}\right)^2}{\dfrac{1}{x}+\dfrac{1}{y}}+\dfrac{\left(\dfrac{1}{x}\right)^2}{\dfrac{1}{y}+\dfrac{1}{z}}+\dfrac{\left(\dfrac{1}{y}\right)^2}{\dfrac{1}{x}+\dfrac{1}{z}}\ge\dfrac{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2}{2\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)}=\dfrac{1}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)

Dâu "=" xảy ra khi \(x=y=z\)

Quốc Huy
Xem chi tiết
Phạm Phú Hoàng Long
12 tháng 11 2017 lúc 8:04

thanghoa

Phạm Phú Hoàng Long
12 tháng 11 2017 lúc 8:04

đúng rùi đó

huỳnh ny
12 tháng 11 2017 lúc 9:56

Sai leu

Nguyễn Thị Diễm Quỳnh
Xem chi tiết
Akai Haruma
5 tháng 8 2017 lúc 11:54

Lời giải:

Đặt \(\left ( \frac{x}{y},\frac{y}{z},\frac{z}{x} \right )=(a,b,c)\Rightarrow abc=1\)

Bài toán tương đương với: Cho \(a,b,c>0\)\(abc=1\). CMR

\(a^2+b^2+c^2\geq a+b+c\)

Thật vậy.

Áp dụng BĐT AM-GM: \(a+b+c\geq 3\sqrt[3]{abc}=3\sqrt[3]{1}=3(1)\)

Theo hệ quả của BĐT Am-Gm:

\(a^2+b^2+c^2\geq ab+bc+ac\Rightarrow 3(a^2+b^2+c^2)\geq a^2+b^2+c^2+2(ab+bc+ac)\)

\(\Rightarrow a^2+b^2+c^2\geq \frac{(a+b+c)^2}{3}\)

Kết hợp với \((1)\Rightarrow a^2+b^2+c^2\geq a+b+c\)

Do đó ta có đpcm

Dấu bằng xảy ra khi \(a=b=c=1\Leftrightarrow x=y=z\)

chuche
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 12 2022 lúc 15:56

Phân số cuối cùng chắc em ghi nhầm

\(\dfrac{x}{y+z+t}+\dfrac{y+z+t}{9x}\ge2\sqrt{\dfrac{x\left(y+z+t\right)}{9x\left(y+z+t\right)}}=\dfrac{2}{3}\)

Tương tự:

\(\dfrac{y}{z+t+x}+\dfrac{z+t+x}{9y}\ge\dfrac{2}{3}\)

\(\dfrac{z}{t+x+y}+\dfrac{t+x+y}{9z}\ge\dfrac{2}{3}\)

\(\dfrac{t}{x+y+z}+\dfrac{x+y+z}{9t}\ge\dfrac{2}{3}\)

Đồng thời:

\(\dfrac{8}{9}\left(\dfrac{y+z+t}{x}+\dfrac{z+t+x}{y}+\dfrac{t+x+y}{z}+\dfrac{x+y+z}{t}\right)\)

\(\ge\dfrac{8}{9}\left(\dfrac{3\sqrt[3]{yzt}}{x}+\dfrac{3\sqrt[3]{ztx}}{y}+\dfrac{3\sqrt[3]{txy}}{z}+\dfrac{3\sqrt[3]{xyz}}{t}\right)\)

\(\ge\dfrac{8}{3}.4\sqrt[4]{\dfrac{\sqrt[3]{yzt}.\sqrt[3]{ztx}.\sqrt[3]{txy}.\sqrt[3]{xyz}}{xyzt}}=\dfrac{32}{3}\)

Cộng vế:

\(VT\ge4.\dfrac{2}{3}+\dfrac{32}{3}=\dfrac{40}{3}\)

Dấu "=" xảy ra khi \(x=y=z=t\)

Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Nguyễn Trọng Chiến
7 tháng 3 2021 lúc 16:04

Áp dụng bđt phụ \(\dfrac{1}{A+B}\le\dfrac{1}{4}\left(\dfrac{1}{A}+\dfrac{1}{B}\right)\forall A,B>0\)

\(\dfrac{1}{2x+y+z}=\dfrac{1}{\left(x+y\right)+\left(x+z\right)}\le\dfrac{1}{4}\left(\dfrac{1}{x+y}+\dfrac{1}{x+z}\right)\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{x}+\dfrac{1}{z}\right)\) Tương tự: \(\dfrac{1}{x+2y+z}\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)

\(\dfrac{1}{x+y+2z}\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{z}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)

\(\Rightarrow\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\le\dfrac{1}{16}\left(\dfrac{4}{x}+\dfrac{4}{y}+\dfrac{4}{z}\right)=1\)

Dấu bằng xảy ra \(\Leftrightarrow x=y=z=\dfrac{3}{4}\)

Big City Boy
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 3 2021 lúc 21:48

\(\dfrac{1}{x+x+y+z}\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=\dfrac{1}{16}\left(\dfrac{2}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)

Tương tự: \(\dfrac{1}{x+2y+z}\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{1}{z}\right)\) ; \(\dfrac{1}{x+y+2z}\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{2}{z}\right)\)

Cộng vế với vế:

\(VT\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=1\)

Dấu "=" xảy ra khi \(x=y=z=\dfrac{3}{4}\)