Phép nhân và phép chia các đa thức

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Mark

cm:

\(1< \dfrac{x}{x+y}+\dfrac{y}{y+z}+\dfrac{z}{z+x}< 2\)

Linh_Windy
2 tháng 10 2017 lúc 11:00

Đặt:

\(linh=\dfrac{x}{x+y}+\dfrac{y}{y+z}+\dfrac{z}{z+x}\)

Ta có: \(\left\{{}\begin{matrix}\dfrac{x}{x+y}>\dfrac{x}{x+y+z}\\\dfrac{y}{y+z}>\dfrac{y}{x+y+z}\\\dfrac{z}{x+z}>\dfrac{z}{x+y+z}\end{matrix}\right.\)

Cộng theo 3 vế ta có:

\(linh>\dfrac{x}{x+y+z}+\dfrac{y}{x+y+z}+\dfrac{z}{x+y+z}=1\)(1)

Lại có: \(\left\{{}\begin{matrix}\dfrac{x}{x+y}< \dfrac{x+z}{x+y+z}\\\dfrac{y}{y+z}< \dfrac{x+y}{x+y+z}\\\dfrac{z}{x+z}< \dfrac{y+z}{x+y+z}\end{matrix}\right.\)

Cộng theo 3 vế ta có:
\(linh< \dfrac{x+z}{x+y+z}+\dfrac{x+y}{x+y+z}+\dfrac{y+z}{x+y+z}=2\) (2)
Từ (1) và (2) ta có:

\(1< linh< 2\left(đpcm\right)\)


Các câu hỏi tương tự
Nguyễn Việt Long
Xem chi tiết
Nguyễn Lê Việt ANh
Xem chi tiết
Vũ Anh Quân
Xem chi tiết
Vũ Anh Quân
Xem chi tiết
Tiểu Thư họ Nguyễn
Xem chi tiết
Hoàng Chi
Xem chi tiết
Bảo Ngọc cute
Xem chi tiết
Loveduda
Xem chi tiết
Duong Thi Nhuong
Xem chi tiết