Đặt:
\(linh=\dfrac{x}{x+y}+\dfrac{y}{y+z}+\dfrac{z}{z+x}\)
Ta có: \(\left\{{}\begin{matrix}\dfrac{x}{x+y}>\dfrac{x}{x+y+z}\\\dfrac{y}{y+z}>\dfrac{y}{x+y+z}\\\dfrac{z}{x+z}>\dfrac{z}{x+y+z}\end{matrix}\right.\)
Cộng theo 3 vế ta có:
\(linh>\dfrac{x}{x+y+z}+\dfrac{y}{x+y+z}+\dfrac{z}{x+y+z}=1\)(1)
Lại có: \(\left\{{}\begin{matrix}\dfrac{x}{x+y}< \dfrac{x+z}{x+y+z}\\\dfrac{y}{y+z}< \dfrac{x+y}{x+y+z}\\\dfrac{z}{x+z}< \dfrac{y+z}{x+y+z}\end{matrix}\right.\)
Cộng theo 3 vế ta có:
\(linh< \dfrac{x+z}{x+y+z}+\dfrac{x+y}{x+y+z}+\dfrac{y+z}{x+y+z}=2\) (2)
Từ (1) và (2) ta có:
\(1< linh< 2\left(đpcm\right)\)