Phân tích:
x2- 2xy + y2+3x - 3y - 10
phân tích các đa thức sau thành nhân tử
a x2 - y2 -3x + 3y
b 2x + 2y -x2 + y2
c x2 -16 + y2 + 2xy
cứuuu
a) \(x^2-y^2-3x+3y\)
\(=\left(x-y\right)\left(x+y\right)-3\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-3\right)\)
b) \(2x+2y-x^2+y^2\)
\(=2\left(x+y\right)-\left(x^2-y^2\right)\)
\(=2\left(x+y\right)-\left(x-y\right)\left(x+y\right)\)
\(=\left(x+y\right)\left(2-x+y\right)\)
c) \(x^2-16+y^2+2xy\)
\(=x^2+y^2+2xy-16\)
\(=\left(x+y\right)^2-16\)
\(=\left(x+y+4\right)\left(x+y-4\right)\)
a) \(x^2-y^2-3x+3y\)
\(=\left(ax+y\right)\left(ax-y\right)-3.\left(x-y\right)\)
b) \(2x+2y-x^2+y^2\)
\(=2\left(x+y\right)-\left(x+y\right)\left(x-y\right)\)
c) \(x^2-16+y^2+2xy\)
\(=\left(x+y\right)\left(x-y\right)+2xy-16\)
Phân tích đa thức thành nhân tử : x2 – 2xy + y2 + 3x – 3y – 10
x2-2xy+y2+3x-3y-10
= (x-y)2+3(x-y)-10
= [(x-y)2+5(x-y)]-[2(x-y)+10]
= (x-y)(x-y+5)-2(x-y+5)
= (x-y+5)(x-y-2)
Ta có: \(x^2-2xy+y^2+3x-3y-10\)
\(=\left(x-y\right)^2+3\left(x-y\right)-10\)
\(=\left(x-y+5\right)\left(x-y-2\right)\)
Phân tích đa thức thành nhân tử
a)A=x2+7x+7y-y2
b)B=x2+2xy+y2-3x-3y
\(a,A=x^2+7x+7y-y^2\\ =x^2-y^2+7x+7y\\ =\left(x-y\right)\left(x+y\right)+7\left(x+y\right)\\ =\left(x+y\right)\left(x-y+7\right)\)
\(b,B=x^2+2xy+y^2-3x-3y\\ =\left(x+y\right)^2-3\left(x+y\right)\\ =\left(x+y\right)\left(x+y-3\right)\)
Phân tích các đa thức sau thành nhân tử:
a) 3x - 3y + x 2 - y 2 ; b) x 2 -4 x 2 y 2 + y 2 + 2xy
c) x 6 - x 4 + 2 x 3 + 2 x 2 ; d) x 3 - 3x 2 +3x - 1 - y 3 .
a) (x - y)(x + y + 3). b) (x + y - 2xy)(2 + y + 2xy).
c) x 2 (x + l)( x 3 - x 2 + 2). d) (x – 1 - y)[ ( x - 1 ) 2 + ( x - 1 ) y + y 2 ].
Phân tích đa thức thành nhân tử:
a) 3x-3y-x2+2xy-y2
b) x2-4x2y2+y2+2xy
c) (x+y)3-(x-y)3
d) x2-5x-14
\(a,=3\left(x-y\right)-\left(x-y\right)^2=\left(x-y\right)\left(3-x+y\right)\\ b,=\left(x+y\right)^2-4x^2y^2=\left(x-2xy+y\right)\left(x+2xy+y\right)\\ c,=\left(x+y-x+y\right)\left[\left(x+y\right)^2+\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\right]\\ =2y\left(x^2+2xy+y^2+x^2-y^2+x^2-2xy+y^2\right)\\ =2y\left(3x^2+y^2\right)\\ d,=x^2+2x-7x-14=\left(x+2\right)\left(x-7\right)\)
Phân tích các đa thức sau thành nhân tử:
a,x3+4x-5
b,x3-3x2+4
c,x3+2x2+3x+2
d,x2+2xy+y2+2x-2y-3
e,(x2+3x)2-2(x2+3x)-8
f,(x2+4x+10)2-7(x2+4x+11)+7
a) x3+4x-5 = x3-x2+x2+4x-5=(x3-x2)+(x2-x)+(5x-5)=x2(x-1)+x(x-1)+5(x-1)=(x2+x+5)(x-1)
b) x3-3x2+4=x3-2x2-x2+4=(x3-2x2)-(x2-4)=x2(x-2)-(x-2)(x+2)=(x2-x+2)(x-2)
c) x3+2x2+3x+2=x3+x2+x2+x+2x+2=(x3+x2)+(x2+x)+(2x+2)=x2(x+1)+x(x+1)+2(x+1)=(x2+x+2)(x+1)
d) bạn xem lại đề đúng ko
e) (x2+3x)2-2(x2+3x)-8=x4+6x3+9x2-2x2-6x-8=x4+6x3+7x2-6x-8=x4-x3+7x3-7x2+14x2-14x+8x-8=(x4-x3)+(7x3-7x2)+(14x2-14x)+(8x-8)=x3(x-1)+7x2(x-1)+14x(x-1)+8(x-1)=(x3+7x2+14x+8)(x-1)=(x3+x2+6x2+6x+8x+8)(x-1)=\(\left[\left(x^3+x^2\right)+\left(6x^2+6x\right)+\left(8x+8\right)\right]\left(x-1\right)\)\(=\left[x^2\left(x+1\right)+6x\left(x+1\right)+8\left(x+1\right)\right]\left(x-1\right)\)\(=\left(x^2+6x+8\right)\left(x+1\right)\left(x-1\right)\)\(=\left(x^2+2x+4x+8\right)\left(x+1\right)\left(x-1\right)\)\(=\left[\left(x^2+2x\right)+\left(4x+8\right)\right]\left(x+1\right)\left(x-1\right)\)\(=\left[x\left(x+2\right)+4\left(x+2\right)\right]\left(x+1\right)\left(x-1\right)\)=\(\left(x-1\right)\left(x+1\right)\left(x+2\right)\left(x+4\right)\)
f) (x2+4x+10)2-7(x2+4x+11)+7=(x2+4x+10)2-\(\left[7\left(x^2+4x+11\right)-7\right]\)\(=\left(x^2+4x+10\right)^2-7\left(x^2+4x+10\right)\)\(=\left(x^2+4x+10\right)\left(x^2+4x+3\right)\)
a) Ta có: \(x^3+4x-5\)
\(=x^3-x+5x-5\)
\(=x\left(x-1\right)\left(x+1\right)+5\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2+x+5\right)\)
b) Ta có: \(x^3-3x^2+4\)
\(=x^3+x^2-4x^2+4\)
\(=x^2\left(x+1\right)-4\left(x-1\right)\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-4x+4\right)\)
\(=\left(x+1\right)\cdot\left(x-2\right)^2\)
c) Ta có: \(x^3+2x^2+3x+2\)
\(=x^3+x^2+x^2+x+2x+2\)
\(=x^2\left(x+1\right)+x\left(x+1\right)+2\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+x+2\right)\)
d) Ta có: \(x^2+2xy+y^2+2x+2y-3\)
\(=\left(x+y\right)^2+2\left(x+y\right)-3\)
\(=\left(x+y\right)^2+3\left(x+y\right)-\left(x+y\right)-3\)
\(=\left(x+y\right)\left(x+y+3\right)-\left(x+y+3\right)\)
\(=\left(x+y+3\right)\left(x+y-1\right)\)
e) Ta có: \(\left(x^2+3x\right)^2-2\left(x^2+3x\right)-8\)
\(=\left(x^2+3x\right)^2-4\left(x^2+3x\right)+2\left(x^2+3x\right)-8\)
\(=\left(x^2+3x\right)\left(x^2+3x-4\right)+2\left(x^2+3x-4\right)\)
\(=\left(x^2+3x-4\right)\left(x^2+3x+2\right)\)
\(=\left(x+4\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)\)
f) Ta có: \(\left(x^2+4x+10\right)^2-7\left(x^2+4x+11\right)+7\)
\(=\left(x^2+4x+10\right)^2-7\left(x^2+4x+10\right)-7+7\)
\(=\left(x^2+4x+10\right)\left(x^2+4x+10-7\right)\)
\(=\left(x^2+4x+3\right)\left(x^2+4x+10\right)\)
\(=\left(x+1\right)\left(x+3\right)\left(x^2+4x+10\right)\)
3x-x2-y2+3y-2xy
3x - x2 - y2 + 3y - 2xy
= (3x + 3y) - (x2 + 2xy + y2)
= 3(x + y) - (x + y)2
= (3 - x - y)(x + y)
Phân tích thành nhân tử:
M= x2 - 5x + xy - 5y
N= x2 - 3x - 2xy + y2 + 3y
K= 2xy + 3z + 6y +xz
\(M=x^2-5x+xy-5y=\left(x+y\right)\left(x-5\right)\)
\(N=x^2-3x-2xy+y^2+3y=\left(x-y\right)\left(x-y-3\right)\)\(K=2xy+3z+6y+xz=\left(x+3\right)\left(2y+z\right)\)
M= x2-5x+xy-5y= x(x-5)+y(x-5)=(x-5)(x+y)
N= x2-3x-2xy+y2+3y=(x-y)2-3(x-y)=(x-y)(x-y-3)
K= 2xy+3z+6y+xz=2y(x+3)+z(x+3)=(x+3)(2y+z)
phân tích đa thức thành nhân tử
x2 - 2xy + y2 + 3x - 3y – 4
\(x^2-2xy+y^2+3x-3y-4\)
\(=\left(x-y\right)^2-1+3x-3y-3\)
\(=\left[\left(x-y\right)^2-1^2\right]+\left(3x-3y-3\right)\)
\(=\left[\left(x-y\right)-1\right]\left[\left(x-y\right)+1\right]+3\left(x-y-1\right)\)
\(=\left(x-y-1\right)\left(x-y+1\right)+3\left(x-y-1\right)\)
\(=\left(x-y-1\right)\left[\left(x-y+1\right)+3\right]\)
\(=\left(x-y-1\right)\left(x-y+4\right)\)