ch/m:
\(\dfrac{1}{3}+\dfrac{2}{3^2}+\dfrac{3}{3^3}+\dfrac{4}{3^4}+...+\dfrac{100}{3^{100}}< \dfrac{3}{4}\)
cC N GIÚP MK NHÉ
1/ Cho A= \(\dfrac{1}{3}\)-\(\dfrac{2}{3^2}\)+\(\dfrac{3}{3^3}\)-\(\dfrac{4}{3^4}\)+...+\(\dfrac{99}{3^{99}}\)-\(\dfrac{100}{3^{100}}\)
c/m A<\(\dfrac{3}{16}\)
Lời giải:
\(A=\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)
\(3A=1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{3^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)
\(4A=A+3A=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+....-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
\(12A=3-1+\frac{1}{3}-\frac{1}{3^2}+....-\frac{1}{3^{98}}-\frac{100}{3^{99}}\)
\(\Rightarrow 16A=12A+4A=3-\frac{101}{3^{99}}-\frac{100}{3^{100}}<3\)
\(\Rightarrow A< \frac{3}{16}\)
Chứng minh: M= \(\dfrac{1}{3}\)+ \(\dfrac{2}{3^2}\)+ \(\dfrac{3}{3^3}\) + .....+ \(\dfrac{100}{3^{100}}\) <\(\dfrac{3}{4}\)
Lời giải:
$M=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+....+\frac{100}{3^{100}}$
$3M=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}$
$\Rightarrow 2M=3M-M=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}$
$2M+\frac{100}{3^{100}}=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}$
$3(2M+\frac{100}{3^{100}})=3+1+\frac{1}{3}+...+\frac{1}{3^{98}}
$\Rightarrow 2(2M+\frac{100}{3^{100}})=3(2M+\frac{100}{3^{100}})-(2M+\frac{100}{3^{100}})=2-\frac{1}{3^{99}}$
$M=\frac{1}{2}-\frac{1}{4.3^{99}}-\frac{50}{3^{100}}<\frac{1}{2}< \frac{3}{4}$
Ta có đpcm.
chung mk:
\(\dfrac{1}{3}+\dfrac{2}{3^2}+\dfrac{3}{3^3}+...+\dfrac{100}{3^{100}}< \dfrac{3}{4}\)
\(\dfrac{1}{3}+\dfrac{2}{3^2}+\dfrac{3}{3^3}+....+\dfrac{100}{3^{100}}< \dfrac{3}{4}\)
\(\Rightarrow3A=1+\dfrac{2}{3}+\dfrac{3}{3^2}+\dfrac{4}{3^3}+....+\dfrac{100}{3^{99}}\)
\(\Rightarrow3A-A=1+\left(\dfrac{2}{3}-\dfrac{1}{3}\right)+\left(\dfrac{3}{3^2}-\dfrac{2}{3^3}\right)+....+\left(\dfrac{100}{3^{99}}-\dfrac{99}{3^{99}}\right)-\dfrac{100}{3^{100}}\)
\(\Rightarrow2A=1+\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+....+\dfrac{1}{3^{99}}-\dfrac{100}{3^{100}}\)
Đặt \(B=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+....+\dfrac{1}{3^{99}}\)
\(\Rightarrow3B=1+\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+....+\dfrac{1}{3^{98}}\)
\(\Rightarrow2B=1-\dfrac{1}{3^{99}}\Rightarrow B=\dfrac{\left(1-\dfrac{1}{3^{99}}\right)}{2}\)
Thay vào \(2A\) \(\Rightarrow2A=1+\dfrac{1}{2}-\dfrac{1}{\left(2.3^{99}\right)}-\dfrac{100}{3^{100}}< 1+\dfrac{1}{2}=\dfrac{3}{2}\)
\(\Rightarrow A< \dfrac{3}{4}\)
Chúc bạn học tốt!
1/ Cho A= \(\dfrac{1}{3}\)-\(\dfrac{2}{3^2}\)+\(\dfrac{3}{3^3}\)-\(\dfrac{4}{3^4}\)+.....+\(\dfrac{99}{3^{99}}\)-\(\dfrac{100}{3^{100}}\) Chứng minh A < \(\dfrac{3}{16}\)
2/ Cho B=(\(\dfrac{1}{2^2}\)-1)(\(\dfrac{1}{3^2}\)-1)....(\(\dfrac{1}{100^2}\)-1) So sánh B và \(\dfrac{-1}{2}\)
2:
\(B=\left(\dfrac{1}{2^2}-1\right)\left(\dfrac{1}{3^2}-1\right)\cdot...\cdot\left(\dfrac{1}{100^2}-1\right)\)
\(=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{3}+1\right)\cdot...\cdot\left(\dfrac{1}{100}-1\right)\left(\dfrac{1}{100}+1\right)\)
\(=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\cdot...\cdot\left(\dfrac{1}{100}-1\right)\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}+1\right)\cdot...\cdot\left(\dfrac{1}{100}+1\right)\)
\(=\dfrac{-1}{2}\cdot\dfrac{-2}{3}\cdot...\cdot\dfrac{-99}{100}\cdot\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{101}{100}\)
\(=-\dfrac{1}{100}\cdot\dfrac{101}{2}=\dfrac{-101}{200}< -\dfrac{100}{200}=-\dfrac{1}{2}\)
chứng minh rằng
a , \(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+...+\dfrac{1}{512}-\dfrac{1}{1024}\) < \(\dfrac{1}{3}\)
b , \(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}\) < \(\dfrac{3}{16}\)
\(\dfrac{1}{3}\)-\(\dfrac{2}{3^2}\)+\(\dfrac{3}{3^3}\)-\(\dfrac{4}{3^4}\)+...+\(\dfrac{99}{3^{99}}\)-\(\dfrac{100}{3^{100}}\)<\(\dfrac{3}{16}\)CMR
Đặt A = \(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}\)
3A = 1 - \(\dfrac{2}{3}+\dfrac{3}{3^2}-\dfrac{4}{3^3}+...+\dfrac{99}{3^{98}}-\dfrac{100}{3^{99}}\)
4A = ( 1 - \(\dfrac{2}{3}+\dfrac{3}{3^2}-\dfrac{4}{3^3}+...+\dfrac{99}{3^{98}}-\dfrac{100}{3^{99}}\) ) + ( \(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}\) )
= 1 - \(\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...-\dfrac{1}{3^{99}}-\dfrac{100}{3^{100}}\)
Đặt B = 1 - \(\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...-\dfrac{1}{3^{99}}\)
3B = 3 - 1 + \(\dfrac{1}{3}-\dfrac{1}{3^2}\) + ... - \(\dfrac{1}{3^{98}}\)
4B = ( 3 - 1 + \(\dfrac{1}{3}-\dfrac{1}{3^2}\) + ... - \(\dfrac{1}{3^{98}}\) ) + ( 1 - \(\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...-\dfrac{1}{3^{99}}\) )
= 3 - \(\dfrac{1}{3^{99}}\)
B = \(\dfrac{3}{4}-\dfrac{1}{3^{99}\cdot4}\)
⇒ 4A = \(\dfrac{3}{4}-\dfrac{1}{3^{99}\cdot4}\) - \(\dfrac{100}{3^{100}}\)
A = \(\dfrac{3}{16}-\dfrac{1}{3^{99}\cdot4^2}-\dfrac{100}{3^{100}}< \dfrac{3}{16}\)
Vậy A < \(\dfrac{3}{16}\)
Chứng minh: \(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}\)<\(\dfrac{3}{16}\)
Đặt \(A=\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}\)
\(\Rightarrow3A=1-\dfrac{2}{3}+\dfrac{3}{3^2}-\dfrac{4}{3^3}+...+\dfrac{99}{3^{98}}-\dfrac{100}{3^{99}}\)
\(\Rightarrow A+3A=1-\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...+\dfrac{1}{3^{98}}-\dfrac{1}{3^{99}}-\dfrac{100}{3^{100}}\)
\(\Rightarrow4A=1-\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...+\dfrac{1}{3^{98}}-\dfrac{1}{3^{99}}-\dfrac{100}{3^{100}}\) (1)
\(\Rightarrow12A=3-1+\dfrac{1}{3}-\dfrac{1}{3^2}+...+\dfrac{1}{3^{97}}-\dfrac{1}{3^{98}}-\dfrac{100}{3^{99}}\) (2)
Cộng vế (1) và (2):
\(\Rightarrow16A=3-\dfrac{101}{3^{99}}-\dfrac{100}{3^{100}}\)
\(\Rightarrow16A< 3\)
\(\Rightarrow A< \dfrac{3}{16}\)
Đặt `A` `=` `1/3 - 2/3^2+3/3^3 - 4/3^4+ ... + 99/3^99-100/3^100`
`=>3A=1 -2/3 +3/3^2 - 4/3^3+ ... - 100/3^99`
`=>4A=A+3A=1-1/3+1/3^2-1/3^3+...-1/3^99 - 100/3^100`
`=>12A=3.4A=3-1+1/3-1/3^2+...-1/3^98 - 100/3^99`
`=>16A=12A+4A=3-1/3^99-100/3^99-100/3^1...`
`=>16A=3-101/3^99-100/3^100`
`<=>A=3/16-(101/3^99+100/3^100)/16 < 3/16`
`=> A<3/16`
@Nae
Cmr : \(\dfrac{1}{3}\) - \(\dfrac{2}{3^2}\) +\(\dfrac{3}{3^3}\) - \(\dfrac{4}{3^4}\) + ...+\(\dfrac{99}{3^{99}}\) - \(\dfrac{100}{3^{100}}\)< \(\dfrac{3}{16}\)
Chứng minh rằng: A=\(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}< \dfrac{3}{16}\)