Lời giải:
$M=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+....+\frac{100}{3^{100}}$
$3M=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}$
$\Rightarrow 2M=3M-M=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}$
$2M+\frac{100}{3^{100}}=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}$
$3(2M+\frac{100}{3^{100}})=3+1+\frac{1}{3}+...+\frac{1}{3^{98}}
$\Rightarrow 2(2M+\frac{100}{3^{100}})=3(2M+\frac{100}{3^{100}})-(2M+\frac{100}{3^{100}})=2-\frac{1}{3^{99}}$
$M=\frac{1}{2}-\frac{1}{4.3^{99}}-\frac{50}{3^{100}}<\frac{1}{2}< \frac{3}{4}$
Ta có đpcm.