CMR \(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}< \dfrac{3}{16}\)
Chứng minh rằng:
\(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}+\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}< \dfrac{3}{16}\)
Chứng minh rằng:
\(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}\)
Chứng minh rằng : A = \(\dfrac{1}{2}-\dfrac{2}{2^2}+\dfrac{3}{2^3}-\dfrac{4}{2^4}+....+\dfrac{99}{2^{99}}-\dfrac{100}{2^{100}}< \dfrac{2}{9}\)
Giúp mk với
Câu 1:
Cho A = \(\dfrac{1}{\dfrac{99}{\dfrac{1}{2}+}}+\dfrac{2}{\dfrac{98}{\dfrac{1}{3}+}}+\dfrac{3}{\dfrac{97}{\dfrac{1}{4}+....}}+...+\dfrac{99}{\dfrac{1}{\dfrac{1}{100}}}\).
B =\(\dfrac{92}{\dfrac{1}{45}+}-\dfrac{1}{\dfrac{9}{\dfrac{1}{50}+}}-\dfrac{2}{\dfrac{10}{\dfrac{1}{55}+}}-\dfrac{3}{\dfrac{11}{\dfrac{1}{60}+....}}-...\dfrac{92}{\dfrac{100}{\dfrac{1}{500}}}\). Tính \(\dfrac{A}{B}\)
a/ Rút gọn 2 biểu thức sau: \(E=\dfrac{\dfrac{1}{99}+\dfrac{2}{98}+\dfrac{3}{97}+...+\dfrac{99}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}}\)và \(F=\dfrac{94-\dfrac{1}{7}-\dfrac{2}{8}-\dfrac{3}{9}-...-\dfrac{94}{100}}{\dfrac{1}{35}+\dfrac{1}{40}+\dfrac{1}{45}+...+\dfrac{1}{500}}\)
b/ Tính E - 2F
rút gọn
\(\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{99}+\dfrac{1}{100}}{\dfrac{1}{99}+\dfrac{2}{98}+...+\dfrac{99}{1}}\)
1/S=\(\left(1+\dfrac{1}{2}\right)\cdot\left(1+\dfrac{1}{3}\right)\cdot\left(1+\dfrac{1}{4}\right)\cdot...\cdot\left(1+\dfrac{1}{100}\right)\)
2/B=\(\left(1-\dfrac{1}{2}\right)\cdot\left(1-\dfrac{1}{3}\right)\cdot\left(1-\dfrac{1}{4}\right)\cdot...\cdot\left(1-\dfrac{1}{2007}\right)\)
3/C=\(\dfrac{2^2}{1\cdot3}\cdot\dfrac{3^2}{2\cdot4}\cdot\dfrac{4^2}{3\cdot5}\cdot...\cdot\dfrac{100^2}{99\cdot101}\)
Cho M = \(\dfrac{1}{2}\cdot\dfrac{3}{4}\cdot\dfrac{5}{6}\cdot...\cdot\dfrac{99}{100}\) ; N = \(\dfrac{2}{3}\cdot\dfrac{4}{5}\cdot\dfrac{6}{7}\cdot...\cdot\dfrac{100}{101}\).
Tính M \(\cdot\) N.