chứng minh rằng
a , \(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+...+\dfrac{1}{512}-\dfrac{1}{1024}\) < \(\dfrac{1}{3}\)
b , \(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}\) < \(\dfrac{3}{16}\)
Chứng minh: \(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}\)<\(\dfrac{3}{16}\)
\(\dfrac{1}{3}\)-\(\dfrac{2}{3^2}\)+\(\dfrac{3}{3^3}\)-\(\dfrac{4}{3^4}\)+...+\(\dfrac{99}{3^{99}}\)-\(\dfrac{100}{3^{100}}\)<\(\dfrac{3}{16}\)CMR
Cho \(S=\dfrac{1}{5^2}+\dfrac{2}{5^3}+\dfrac{3}{5^4}+...+\dfrac{99}{5^{100}}\). Chứng tỏ rằng S<\(\dfrac{1}{16}\)
Cho S=\(\dfrac{1}{5^2}+\dfrac{2}{5^3}+\dfrac{3}{5^4}+...+\dfrac{99}{5^{100}}\) . Chứng tỏ rằng \(S< \dfrac{1}{16}\)
Cho biểu thức :
A = \(\dfrac{4}{3}+\dfrac{10}{9}+\dfrac{28}{27}+....+\dfrac{3^{99}+1}{3^{99}}\)
Chứng minh rằng : A < 100
CMR \(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}< \dfrac{3}{16}\) \(\frac{3}{16}\)
Cho S = \(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+....+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}\) so sánh S và \(\dfrac{1}{5}\)
Chứng tỏ rằng: \(\dfrac{200-\left(3+\dfrac{2}{3}+\dfrac{2}{4}+\dfrac{2}{5}+...+\dfrac{2}{100}\right)}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}}\)=2