Những câu hỏi liên quan
Đoàn Thị Thu Hương
Xem chi tiết
Thầy Giáo Toán
1 tháng 9 2015 lúc 22:45

Đặt \(b+c-a=2x,c+a-b=2y,a+b-c=2z\to x,y,z>0\)  v

à thỏa mãn \(a=y+z,b=z+x,c=x+y.\) Đặt \(S=2VT\)  (hai lần vế trái của bất đẳng thức)  thì ta có

\(S=\frac{4\left(y+z\right)}{x}+\frac{9\left(x+z\right)}{y}+\frac{16\left(x+y\right)}{z}=\left(\frac{4y}{x}+\frac{9x}{y}\right)+\left(\frac{4z}{x}+\frac{16x}{z}\right)+\left(\frac{9z}{y}+\frac{16y}{z}\right)\)

Theo bất đẳng thức Cô-Si ta được

\(S\ge2\sqrt{\frac{4y}{x}\cdot\frac{9x}{y}}+2\sqrt{\frac{4z}{x}\cdot\frac{16x}{z}}+2\sqrt{\frac{9z}{y}\cdot\frac{16y}{z}}=2\cdot6+2\cdot8+2\cdot12=2\cdot26=52.\)

Suy ra \(VT=\frac{S}{2}\ge\frac{52}{2}=26\).   (ĐPCM)


 

Bình luận (0)
Xem chi tiết
Thanh Tùng DZ
1 tháng 11 2019 lúc 21:42

đề sai ở mẫu cuối nhé

đặt b + c - a = x ; a + c - b = y ; a + b - c = z

\(\Rightarrow a=\frac{y+z}{2};b=\frac{x+z}{2};c=\frac{x+y}{2}\)

\(\Rightarrow P=\frac{2\left(y+z\right)}{x}+\frac{9\left(x+z\right)}{2y}+\frac{8\left(x+y\right)}{z}=\frac{2y}{x}+\frac{9x}{2y}+\frac{2z}{x}+\frac{8x}{z}+\frac{9z}{2y}+\frac{8y}{z}\)

\(\ge6+8+12=26\)

Bình luận (0)
 Khách vãng lai đã xóa
Thanh Tùng DZ
1 tháng 11 2019 lúc 21:48

bài này dấu ' =" giải ra mệt lắm nên bạn tự giải

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Mary
Xem chi tiết
Akai Haruma
19 tháng 7 2019 lúc 0:27

Lời giải:

Gọi biểu thức đã cho là $P$. Áp dụng BĐT Cauchy-Schwarz:

\(P+\frac{29}{2}=\frac{4a}{b+c-a}+2+\frac{9b}{c+a-b}+\frac{9}{2}+\frac{16c}{a+b-c}+8\)

\(=\frac{2(a+b+c)}{b+c-a}+\frac{\frac{9}{2}(a+b+c)}{c+a-b}+\frac{8(a+b+c)}{a+b-c}\)

\(=(a+b+c)\left(\frac{2}{b+c-a}+\frac{\frac{9}{2}}{c+a-b}+\frac{8}{a+b-c}\right)\)

\(\geq (a+b+c).\frac{(\sqrt{2}+\sqrt{\frac{9}{2}}+\sqrt{8})^2}{b+c-a+c+a-b+a+b-c}=\frac{81}{2}\)

\(\Rightarrow P\geq \frac{81}{2}-\frac{29}{2}=26\) (đpcm)

Bình luận (6)
Nguyễn Hải An
Xem chi tiết
Aki Tsuki
1 tháng 6 2018 lúc 22:50
Bình luận (0)
nguyễn phùng phước
Xem chi tiết
Akai Haruma
20 tháng 2 2019 lúc 23:35

Lời giải:

Áp dụng BĐT Cauchy-Schwarz ta có:
\(P=\frac{4a}{b+c-a}+\frac{9b}{a+c-b}+\frac{16c}{a+b-c}\)

\(P+\frac{29}{2}=\frac{4a}{b+c-a}+2+\frac{9b}{a+c-b}+\frac{9}{2}+\frac{16c}{a+b-c}+8\)

\(=\frac{2(a+b+c)}{b+c-a}+\frac{9(a+b+c)}{2(a+c-b)}+\frac{8(a+b+c)}{a+b-c}\)

\(=2(a+b+c)\left(\frac{1}{b+c-a}+\frac{\frac{9}{4}}{a+c-b}+\frac{4}{a+b-c}\right)\)

\(\geq 2(a+b+c).\frac{(1+\frac{3}{2}+2)^2}{b+c-a+a+c-b+a+b-c}=\frac{81}{2}.(a+b+c).\frac{1}{a+b+c}=\frac{81}{2}\)

\(\Rightarrow P\geq \frac{81}{2}-\frac{29}{2}=26\)

Vậy \(P_{\min}=26\)

Bình luận (0)
Trương  quang huy hoàng
Xem chi tiết
Akai Haruma
11 tháng 11 2018 lúc 23:30

Lời giải:

Ta có:

\(A=\frac{4a}{b+c-a}+\frac{9b}{a+c-b}+\frac{16c}{a+b-c}\)

\(\Rightarrow A+\frac{29}{2}=\frac{4a}{b+c-a}+2+\frac{9b}{a+c-b}+\frac{9}{2}+\frac{16c}{a+b-c}+8\)

\(A+\frac{29}{2}=\frac{2(a+b+c)}{b+c-a}+\frac{\frac{9}{2}(a+b+c)}{a+c-b}+\frac{8(a+b+c)}{a+b-c}\)

\(A+\frac{29}{2}=(a+b+c)\left(\frac{2}{b+c-a}+\frac{\frac{9}{2}}{a+c-b}+\frac{8}{a+b-c}\right)\)

\(\geq (a+b+c).\frac{(\sqrt{2}+\sqrt{\frac{9}{2}}+\sqrt{8})^2}{b+c-a+a+c-b+a+b-c}=\frac{81}{2}\)

(Áp dụng BĐT S.Vac -xơ)

\(\Rightarrow A\geq 26\)

Vậy \(A_{\min}=26\)

Bình luận (0)
Phan Thị Diệu Thúy
Xem chi tiết
Akai Haruma
11 tháng 11 2018 lúc 23:31
Bình luận (0)
Big City Boy
Xem chi tiết
missing you =
14 tháng 10 2021 lúc 20:02

\(A=\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}+\dfrac{1}{c+a-b}\)\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}\ge\dfrac{4}{a+b-c+b+c-a}\ge\dfrac{4}{2b}\ge\dfrac{2}{b}\\\dfrac{1}{b+c-a}+\dfrac{1}{c+a-b}\ge\dfrac{4}{b+c-a+c+a-b}\ge\dfrac{4}{2c}\ge\dfrac{2}{c}\\\dfrac{1}{a+b-c}+\dfrac{1}{c+a-b}\ge\dfrac{4}{a+b-c+c+a-b}\ge\dfrac{4}{2a}\ge\dfrac{2}{a}\end{matrix}\right.\)

\(\Rightarrow2\left(\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}+\dfrac{1}{c+a-b}\right)\ge\left(\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\right)\ge2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(\Rightarrow A\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) \(dấu"="xảy\) \(ra\Leftrightarrow a=b=c\)

Bình luận (0)
Lenna ^-^
Xem chi tiết
Trên con đường thành côn...
8 tháng 7 2023 lúc 9:43

BĐT\(\Leftrightarrow\dfrac{a}{-a+b+c}+\dfrac{b}{a-b+c}+\dfrac{c}{a+b-c}\ge3\)

Áp dụng BĐT Svac-xơ, ta có:

\(\dfrac{a^2}{-a^2+ab+ac}+\dfrac{b^2}{ab-b^2+bc}+\dfrac{c^2}{ac+bc-c^2}\ge\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)-\left(a^2+b^2+c^2\right)}\)

Ta có: \(a,b,c\) là 3 cạnh của 1 tam giác nên:

\(a\left(b+c\right)>a^2\). Tương tự và cộng theo vế, ta có:

\(2\left(ab+bc+ca\right)-\left(a^2+b^2+c^2\right)>0\)

Ta sẽ chứng minh \(\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)-\left(a^2+b^2+c^2\right)}\ge3\left(1\right)\)

Thật vậy, \(BĐT\left(1\right)\Leftrightarrow3\left(a^2+b^2+c^2\right)+\left(a+b+c\right)^2\ge6\left(ab+bc+ca\right)\), đúng

Đẳng thức xảy ra khi và chỉ khi \(a=b=c\)

Bình luận (0)
Trên con đường thành côn...
8 tháng 7 2023 lúc 9:48

Cách 2:

Đặt \(\left\{{}\begin{matrix}-a+b+c=x\\a-b+c=y\\a+b-c=z\end{matrix}\right.\) với \(x,y,z>0\)

Khi đó ta có \(a=\dfrac{y+z}{2};b=\dfrac{x+z}{2};c=\dfrac{x+y}{2}\)

BĐT cần chứng minh trở thành:

\(\dfrac{y+z}{x}+\dfrac{x+z}{y}+\dfrac{x+y}{z}\ge6\), đúng theo bđt Cauchy

Đẳng thức xảy ra khi và chỉ khi \(x=y=z\Leftrightarrow a=b=c\)

Bình luận (2)