Những câu hỏi liên quan
Thư Trần
Xem chi tiết
Gia Huy
18 tháng 6 2023 lúc 21:35

Đặt \(x=\dfrac{1}{a},y=\dfrac{1}{b},z=\dfrac{1}{c}\) khi đó thu được \(xyz=1\)

Ta có:

\(\dfrac{1}{a^2\left(b+c\right)}=\dfrac{x^2}{\dfrac{1}{y}+\dfrac{1}{z}}=\dfrac{x^2yz}{y+z}=\dfrac{x}{y+z}\)

BĐT cần chứng minh được viết lại thành:\(\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}\ge\dfrac{3}{2}\)

\(\Leftrightarrow\left(\dfrac{x}{y+z}+1\right)+\left(\dfrac{y}{z+x}+1\right)+\left(\dfrac{z}{x+y}+1\right)\ge\dfrac{9}{2}\)

\(\Leftrightarrow\left(x+y+z\right)\left(\dfrac{1}{y+z}+\dfrac{1}{z+x}+\dfrac{1}{x+y}\right)\ge\dfrac{9}{2}\)

Đánh giá cuối cùng đúng theo BĐT Cauchy

Vậy BĐT được chứng minh. Đẳng thức xảy ra khi và chỉ khi  a = b = c = 1.

Bình luận (1)
An Trịnh Hữu
Xem chi tiết
An Trịnh Hữu
17 tháng 7 2017 lúc 10:05

Từ \(\dfrac{a-\left(c-b\right)}{b-c}+\dfrac{b-\left(a-c\right)}{c-a}+\dfrac{c-\left(b-a\right)}{a-b}=3\)

\(=>\dfrac{a}{b-c}+1+\dfrac{b}{c-a}+1+\dfrac{c}{a-b}+1=3\)

\(=>\dfrac{a}{b-c}-\dfrac{b}{a-c}-\dfrac{c}{b-a}=0\)

\(=>\dfrac{a}{b-c}=\dfrac{b}{a-c}+\dfrac{c}{b-a}=\dfrac{b^2-ab+ac-c^2}{\left(c-a\right)\left(a-b\right)}\)

Nhân cả 2 vế với \(\dfrac{1}{b-c}\) ta được

\(\dfrac{a}{\left(b-c\right)^2}=\dfrac{b^2-ab+ac-c^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\left(1\right)\)

Tương tự ta có:

\(\dfrac{b}{\left(c-a\right)^2}=\dfrac{c^2-bc+bc-a^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\left(2\right)\)

\(\dfrac{c}{\left(a-b\right)^2}=\dfrac{a^2-ca+cb-c^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\left(3\right)\)

Cộng theo vế (1);(2);(3) ta có ĐPCM

CHÚC BẠN HỌC TỐT.........

Bình luận (0)
Nguyen hoan
Xem chi tiết
Quách Phú Đạt
Xem chi tiết
Kuro Kazuya
7 tháng 5 2017 lúc 4:02

Theo hệ quả của bất đẳng thức Cauchy

\(\Rightarrow a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow\dfrac{a^2}{2}+\dfrac{b^2}{c}+\dfrac{c^2}{c}\ge\dfrac{ab}{2}+\dfrac{bc}{2}+\dfrac{ca}{2}\)

\(\Leftrightarrow a^2-\dfrac{a^2}{2}+b^2-\dfrac{b^2}{2}+c^2-\dfrac{c^2}{2}\ge\dfrac{ab}{2}+\dfrac{bc}{2}+\dfrac{ca}{2}\)

\(\Leftrightarrow a^2+b^2+c^2\ge\dfrac{a^2+b^2+c^2+ab+bc+ca}{2}\)

\(\Leftrightarrow a^2+b^2+c^2\ge\dfrac{2\left(a^2+b^2+c^2+ab+bc+ca\right)}{4}\)

\(\Leftrightarrow a^2+b^2+c^2\ge\dfrac{\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2}{4}\) (1)

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow a^2+b^2\ge2\sqrt{a^2b^2}=2ab\)

\(\Rightarrow\left(a+b\right)^2\ge4ab\)

Tương tự ta có \(\left\{{}\begin{matrix}\left(b+c\right)^2\ge4bc\\\left(c+a\right)^2\ge4ca\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left(a+b\right)^2c+\left(a+b\right)^2\ge4abc+\left(a+b\right)^2\\\left(b+c\right)^2a+\left(b+c\right)^2\ge4abc+\left(b+c\right)^2\\\left(c+a\right)^2b+\left(c+a\right)^2\ge4abc+\left(c+a\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(a+b\right)^2\left(c+1\right)\ge4abc+\left(a+b\right)^2\\\left(b+c\right)^2\left(a+1\right)\ge4abc+\left(b+c\right)^2\\\left(c+a\right)^2\left(b+1\right)\ge4abc+\left(c+a\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{8}{\left(a+b\right)^2\left(c+1\right)}\le\dfrac{8}{4abc+\left(a+b\right)^2}\\\dfrac{8}{\left(b+c\right)^2\left(a+1\right)}\le\dfrac{8}{4abc+\left(b+c\right)^2}\\\dfrac{8}{\left(c+a\right)^2\left(b+1\right)}\le\dfrac{8}{4abc+\left(c+a\right)^2}\end{matrix}\right.\) (2)

Từ (1) và (2)

\(\Rightarrow VT\ge\dfrac{8}{\left(a+b\right)^2\left(c+1\right)}+\dfrac{8}{\left(b+c\right)^2\left(a+1\right)}+\dfrac{8}{\left(c+a\right)^2\left(b+1\right)}+\dfrac{\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a^2\right)}{4}\) (3)

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\dfrac{8}{\left(a+b\right)^2\left(c+1\right)}+\dfrac{\left(a+b\right)^2}{4}\ge2\sqrt{\dfrac{2}{c+1}}=\dfrac{4}{\sqrt{2\left(c+1\right)}}\)

Tương tự ta có \(\left\{{}\begin{matrix}\dfrac{8}{\left(b+c\right)^2\left(a+1\right)}+\dfrac{\left(b+c\right)^2}{4}\ge\dfrac{4}{\sqrt{2\left(a+1\right)}}\\\dfrac{8}{\left(c+a\right)^2\left(b+1\right)}+\dfrac{\left(c+a\right)^2}{4}\ge\dfrac{4}{\sqrt{2\left(b+1\right)}}\end{matrix}\right.\)

\(\Rightarrow\dfrac{8}{\left(a+b\right)^2\left(c+1\right)}+\dfrac{8}{\left(b+c\right)^2\left(a+1\right)}+\dfrac{8}{\left(c+a\right)^2\left(b+1\right)}+\dfrac{\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a^2\right)}{4}\ge\dfrac{4}{\sqrt{2\left(c+1\right)}}+\dfrac{4}{\sqrt{2\left(a+1\right)}}+\dfrac{4}{\sqrt{2\left(b+1\right)}}\)(4)

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\sqrt{2\left(c+1\right)}\le\dfrac{c+3}{2}\)

\(\Rightarrow\dfrac{4}{\sqrt{2\left(c+1\right)}}\ge\dfrac{8}{c+3}\)

Tượng tự ta có \(\left\{{}\begin{matrix}\dfrac{4}{\sqrt{2\left(a+1\right)}}\ge\dfrac{8}{a+3}\\\dfrac{4}{\sqrt{2\left(b+1\right)}}\ge\dfrac{8}{b+3}\end{matrix}\right.\)

\(\Rightarrow\dfrac{4}{\sqrt{2\left(c+1\right)}}+\dfrac{4}{\sqrt{2\left(a+1\right)}}+\dfrac{4}{\sqrt{2\left(b+1\right)}}\ge\dfrac{8}{a+3}+\dfrac{8}{b+3}+\dfrac{8}{c+3}\) (5)

Từ điều (3) , (4) , (5)

\(\Rightarrow\dfrac{8}{\left(a+b\right)^2+4abc}+\dfrac{8}{\left(b+c\right)^2+4abc}+\dfrac{8}{\left(c+a\right)^2+4abc}+a^2+b^2+c^2\ge\dfrac{8}{a+3}+\dfrac{8}{b+3}+\dfrac{8}{c+3}\) ( đpcm )

Bình luận (0)
poppy Trang
Xem chi tiết
Nguyễn Đình Phú
9 tháng 6 2018 lúc 15:36

abcbaccba=0=>ab−c−ba−c−cb−a=0

=>abc=bac+cba=b2ab+acc2(ca)(ab)=>ab−c=ba−c+cb−a=b2−ab+ac−c2(c−a)(a−b)

Nhân cả 2 vế với 1bc1b−c ta được

a(bc)2=b2ab+acc2(ab)(bc)(ca)(1)a(b−c)2=b2−ab+ac−c2(a−b)(b−c)(c−a)(1)

Tương tự ta có:

b(ca)2=c2bc+bca2(ab)(bc)(ca)(2)b(c−a)2=c2−bc+bc−a2(a−b)(b−c)(c−a)(2)

c(ab)2=a2ca+cbc2(ab)(bc)(ca)(3)c(a−b)2=a2−ca+cb−c2(a−b)(b−c)(c−a)(3)

Cộng theo vế (1);(2);(3) ta có ĐPCM

Bình luận (0)
Nguyễn Thanh Hiền
Xem chi tiết
Akai Haruma
31 tháng 12 2018 lúc 22:54

Lời giải:
Ta có:

\(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\Rightarrow \frac{a}{b-c}=\frac{-b}{c-a}+\frac{-c}{a-b}\)

\(\Leftrightarrow \frac{a}{b-c}=\frac{-b(a-b)-c(c-a)}{(a-b)(c-a)}=\frac{b^2+ca-c^2-ab}{(a-b)(c-a)}\)

\(\Rightarrow \frac{a}{(b-c)^2}=\frac{b^2+ca-c^2-ab}{(a-b)(b-c)(c-a)}\)

Hoàn toàn tương tự:

\(\frac{b}{(c-a)^2}=\frac{c^2+ab-a^2-bc}{(a-b)(b-c)(c-a)}\)

\(\frac{c}{(a-b)^2}=\frac{a^2+bc-b^2-ac}{(a-b)(b-c)(c-a)}\)

Cộng theo vế các đẳng thức vừa thu được ta có:

\(\frac{a}{(b-c)^2}+\frac{b}{(c-a)^2}+\frac{c}{(a-b)^2}=\frac{b^2+ac-c^2-ab+c^2+ab-a^2-bc+a^2+bc-b^2-ac}{(a-b)(b-c)(c-a)}=0\)

Ta có đpcm.

Bình luận (1)
Quân Trần Hữu
Xem chi tiết
Neet
10 tháng 9 2017 lúc 19:56

\(BĐT\Leftrightarrow\left[\left(a+b\right)+\left(a+c\right)+\left(b+c\right)\right]\left(\dfrac{a^2+b^2}{a+b}+\dfrac{a^2+c^2}{a+c}+\dfrac{b^2+c^2}{b+c}\right)\le6\left(a^2+b^2+c^2\right)\)

Giả sử \(a\ge b\ge c\) thì \(a+b\ge a+c\ge b+c\) (**)

\(\dfrac{a^2+b^2}{a+b}\ge\dfrac{a^2+c^2}{a+c}\ge\dfrac{b^2+c^2}{b+c}\)(*)

Ta sẽ chứng minh (*) : \(\dfrac{a^2+b^2}{a+b}\ge\dfrac{a^2+c^2}{a+c}\Leftrightarrow ab\left(b-a\right)+ac\left(a-c\right)+bc\left(b-c\right)\ge0\)

\(\Leftrightarrow\left(b-c\right)\left[bc+a\left(b+c-a\right)\right]\ge0\)( đúng khi a,b,c là 3 cạnh 1 tam giác )

Tương tự :\(\dfrac{a^2+c^2}{a+c}\ge\dfrac{b^2+c^2}{b+c}\)

Từ (**) và (*) , Áp dụng BĐT chebyshev:( 2 dãy cùng chiều)

\(\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]\left(\dfrac{a^2+b^2}{a+b}+\dfrac{a^2+c^2}{a+c}+\dfrac{b^2+c^2}{b+c}\right)\le3\left(a^2+b^2+b^2+c^2+c^2+a^2\right)=6\left(a^2+b^2+c^2\right)\)(đpcm)

Dấu = xảy ra khi a=b=c

Bình luận (5)
Đạt Nguyễn
Xem chi tiết
Unruly Kid
20 tháng 7 2017 lúc 10:25

1) Từ \(\dfrac{a}{b-c}+\dfrac{b}{c-a}+\dfrac{c}{a-b}=0\), suy ra

\(\dfrac{a}{b-c}=\dfrac{b}{a-c}+\dfrac{c}{b-a}=\dfrac{b^2-ab+ac-c^2}{\left(a-b\right)\left(c-a\right)}\)

Nhân cả 2 vế với \(\dfrac{1}{b-c}\Rightarrow\dfrac{a}{\left(b-c\right)^2}=\dfrac{b^2-ab+ac-c^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\left(1\right)\)

Tương tự: \(\dfrac{b}{\left(c-a\right)^2}=\dfrac{c^2-bc+ba-a^2}{\left(b-c\right)\left(c-a\right)\left(a-b\right)}\left(2\right)\)

\(\dfrac{c}{\left(a-b\right)^2}=\dfrac{a^2-ca+bc-b^2}{\left(c-a\right)\left(a-b\right)\left(b-c\right)}\left(3\right)\)

Cộng \(\left(1\right),\left(2\right),\left(3\right)\) vế theo vế, ta được:

\(\dfrac{a}{\left(b-c\right)^2}+\dfrac{b}{\left(c-a\right)^2}+\dfrac{c}{\left(a-b\right)^2}=0\)

Bình luận (0)
Unruly Kid
20 tháng 7 2017 lúc 10:31

2) Đặt vế trái đẳng thức cần chứng minh là P

Đặt \(A=\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\), ta có:

\(A.\dfrac{c}{a-b}=1+\dfrac{c}{a-b}\left(\dfrac{b-c}{a}+\dfrac{c-a}{b}\right)=1+\dfrac{c}{a-b}.\dfrac{b^2-bc+ac-a^2}{ab}\)

\(=1+\dfrac{c}{a-b}.\dfrac{\left(a-b\right)\left(c-a-b\right)}{ab}=1+\dfrac{2c^2}{ab}=1+\dfrac{2c^3}{abc}\)

Tương tự: \(A.\dfrac{a}{b-c}=1+\dfrac{2a^3}{abc},A.\dfrac{b}{c-a}=1+\dfrac{2b^3}{abc}\)

Vậy \(P=3+\dfrac{2\left(a^3+b^3+c^3\right)}{abc}=9\)

P/S: \(a+b+c=0\Rightarrow a^3+b^3+c^3=3abc\)(Cái này tự chứng minh)

Bình luận (0)
Trần Thiên Kim
Xem chi tiết
Thiên Băng
31 tháng 7 2017 lúc 17:34

3) Biến đổi tương đương:

\(8\left(a^3+b^3+c^3\right)\ge\left(a+b\right)^3+\left(b+c\right)^3+\left(a+c\right)^3\) (1)

\(\Leftrightarrow\left(a^3+b^3\right)+\left(b^3+c^3\right)+\left(a^3+c^3\right)+6\left(a^3+c^3+b^3\right)\)

\(\ge\left(a^3+b^3\right)+\left(b^3+c^3\right)+\left(a^3+c^3\right)+3ab\left(a+b\right)+3bc\left(b+c\right)+3ac\left(a+c\right)\)

\(\Leftrightarrow2\left(a^3+b^3+c^3\right)\ge ab\left(a+b\right)+bc\left(b+c\right)+ac\left(a+c\right)\)

\(\Leftrightarrow\left[a^3+b^3-ab\left(a+b\right)\right]+\left[a^3+c^3-ac\left(a+c\right)\right]+\left[b^3+c^3-bc\left(b+c\right)\right]\ge0\)

\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2+\left(a+c\right)\left(a-c\right)^2+\left(b+c\right)\left(b-c\right)^2\ge0\) luôn đúng do a, b, c > 0

=> (1) đúng

Dấu "=" xảy ra khi a = b = c

Bình luận (0)
Nguyễn Quang Định
31 tháng 7 2017 lúc 17:52

4) Ta có: a+b>c ; b+c>a; a+c>b

Xét \(\dfrac{1}{a+c}+\dfrac{1}{b+c}>\dfrac{1}{a+b+c}+\dfrac{1}{b+c+a}=\dfrac{2}{a+b+c}>\dfrac{2}{a+b+a+b}=\dfrac{1}{a+b}\)

Tương tự: \(\dfrac{1}{a+b}+\dfrac{1}{a+c}>\dfrac{1}{b+c}\)

\(\dfrac{1}{a+b}+\dfrac{1}{b+c}>\dfrac{1}{a+c}\)

Vậy suy ra được điều phải chứng minh

Bình luận (0)
Nguyễn Quang Định
31 tháng 7 2017 lúc 18:05

2) Xét: \(\dfrac{a^2}{b^2+c^2}-\dfrac{a}{b+c}=\dfrac{a\left(ab+ac-b^2-c^2\right)}{\left(b^2+c^2\right)\left(b+c\right)}=\dfrac{ab\left(a-b\right)+ac\left(a-c\right)}{\left(b^2+c^2\right)\left(b+c\right)}\left(1\right)\)

Tương tự:

\(\dfrac{b^2}{c^2+a^2}-\dfrac{b}{c+a}=\dfrac{bc\left(b-c\right)+ba\left(b-a\right)}{\left(c^2+a^2\right)\left(c+a\right)}\left(2\right)\)

\(\dfrac{c^2}{a^2+b^2}-\dfrac{c}{a+b}=\dfrac{ca\left(c-a\right)+cb\left(c-b\right)}{\left(c^2+a^2\right)\left(c+a\right)}\left(3\right)\)

Cộng (1),(2),(3) vế theo vế ta được:

\(\left(\dfrac{a^2}{b^2+c^2}+\dfrac{b^2}{c^2+a^2}+\dfrac{c^2}{a^2+b^2}\right)-\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)\)

\(=ab\left(a-b\right)\left[\dfrac{1}{\left(b^2+c^2\right)\left(b+c\right)}-\dfrac{1}{\left(a^2+c^2\right)\left(a+c\right)}\right]+ac\left(a-c\right)\left[\dfrac{1}{b^2+c^2\left(b+c\right)}-\dfrac{1}{\left(a^2+b^2\right)\left(a+b\right)}\right]+bc\left(b-c\right)\left[\dfrac{1}{\left(a^2+c^2\right)\left(a+c\right)}-\dfrac{1}{\left(a^2+b^2\right)\left(a+b\right)}\right]\)

Giả sử \(a\ge b\ge c>0\) thì các biểu thức trong ngoặc tròn, vuông không âm

=> đpcm

Bình luận (1)