Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Châu Mỹ Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 5 2021 lúc 13:44

Câu 1:

Sửa đề: \(B=\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{x+3\sqrt{x}}\right)\)

Ta có: \(B=\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{x+3\sqrt{x}}\right)\)

\(=\left(\dfrac{x}{\sqrt{x}\left(\sqrt{x}+3\right)}+\dfrac{1}{\sqrt{x}+3}\right):\left(\dfrac{x+3\sqrt{x}-2\left(\sqrt{x}+3\right)+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\right)\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}:\dfrac{x+3\sqrt{x}-2\sqrt{x}-6+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{x+\sqrt{x}}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}=1\)

Nguyễn Lê Phước Thịnh
5 tháng 5 2021 lúc 13:46

Câu 3: 

Ta có: \(Q=\left(\dfrac{a}{a-2\sqrt{a}}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{a-4\sqrt{a}+4}\)

\(=\left(\dfrac{a}{\sqrt{a}\left(\sqrt{a}-2\right)}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{\left(\sqrt{a}-2\right)^2}\)

\(=\dfrac{a+\sqrt{a}}{\sqrt{a}-2}\cdot\dfrac{\sqrt{a}-2}{\sqrt{a}+1}\cdot\dfrac{\sqrt{a}-2}{1}\)

\(=\sqrt{a}\left(\sqrt{a}-2\right)\)

\(=a-2\sqrt{a}\)

Thanh Trúc
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 4 2021 lúc 17:26

Để được trợ giúp 1 cách chính xác, bạn cần gõ đề 1 cách đầy đủ (bao gồm dấu ngoặc)

Nhìn đề của bạn thì chắc chắn là thiếu vài dấu ngoặc rồi

Dung Vu
Xem chi tiết
ILoveMath
10 tháng 11 2021 lúc 14:34

a.\(A=\dfrac{x^2-4x+4}{x^3-2x^2-\left(4x-8\right)}=\dfrac{\left(x-2\right)^2}{x^2\left(x-2\right)-4\left(x-2\right)}=\dfrac{\left(x-2\right)^2}{\left(x^2-4\right)\left(x-2\right)}=\dfrac{x-2}{\left(x-2\right)\left(x+2\right)}=\dfrac{1}{x+2}\)

 

Nguyễn Hoàng Minh
10 tháng 11 2021 lúc 14:35

\(A=\dfrac{\left(x-2\right)^2}{x^2\left(x-2\right)-4\left(x-2\right)}\left(x\ne\pm2\right)\\ A=\dfrac{\left(x-2\right)^2}{\left(x-2\right)^2\left(x+2\right)}=\dfrac{1}{x+2}\\ B=\dfrac{x+2-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\dfrac{4\sqrt{x}}{3}\left(x>0\right)\\ B=\dfrac{4\sqrt{x}\left(\sqrt{x}+1\right)}{3\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}=\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\)

tranthuylinh
Xem chi tiết
Chuyên Toán
18 tháng 8 2021 lúc 13:16

a. \(N=\left(\dfrac{x+2}{x\sqrt{x}+1}-\dfrac{1}{\sqrt{x}+1}\right).\dfrac{4\sqrt{x}}{3}\)  \(\left(ĐKXĐ:x\ge0\right)\)

\(N=\left(\dfrac{x+2}{x\sqrt{x}+1}-\dfrac{x-\sqrt{x}+1}{x\sqrt{x}+1}\right).\dfrac{4\sqrt{x}}{3}\)

\(\text{​​}\text{​​}N=\dfrac{\sqrt{x}+1}{x\sqrt{x}+1}.\dfrac{4\sqrt{x}}{3}\)

\(N=\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\)

b.\(N=\dfrac{8}{9}\Leftrightarrow\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}=\dfrac{8}{9}\)

\(\Leftrightarrow3\sqrt{x}=2x-2\sqrt{x}+2\)

\(\Leftrightarrow\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{4}\\x=4\end{matrix}\right.\)

c.\(\dfrac{1}{N}>\dfrac{3\sqrt{x}}{4}\Leftrightarrow\dfrac{3\left(x-\sqrt{x}+1\right)}{4\sqrt{x}}>\dfrac{3\sqrt{x}}{4}\)

\(\Leftrightarrow x-\sqrt{x}+1>x\)

\(\Leftrightarrow x< 1\)

 

Nguyễn Lê Phước Thịnh
18 tháng 8 2021 lúc 13:55

a: ĐKXĐ: \(x\ge0\)

Ta có: \(N=\left(\dfrac{x+2}{x\sqrt{x}+1}-\dfrac{1}{\sqrt{x}+1}\right)\cdot\dfrac{4\sqrt{x}}{3}\)

\(=\dfrac{x+2-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\dfrac{4\sqrt{x}}{3}\)

\(=\dfrac{4\sqrt{x}}{3x-3\sqrt{x}+3}\)

thu dinh
Xem chi tiết
NLT MInh
2 tháng 3 2021 lúc 11:22

ĐKXĐ x\(\ge0,x\ne1,x\ne4\)

P=\(\left(\dfrac{\left(x+2\sqrt{x}+4\right)}{\left(\sqrt{x}-2\right)\left(x+2\sqrt{x}+4\right)}+\dfrac{x+2\sqrt{x}+4}{x-1}\right):\dfrac{3\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)+\sqrt{x}+1+2\sqrt{x}-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)

 

P=\(\left(\dfrac{1}{\sqrt{x}-2}+\dfrac{x+2\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right).\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{3\left(x-3\right)}\)

P=\(\dfrac{x-1+\left(\sqrt{x}-2\right)\left(x+2\sqrt{x}+4\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{3\left(x-3\right)}\)

P=\(\dfrac{x\sqrt{x}+x-9}{3\left(x-3\right)}\)

Hoàng Kiều Quỳnh Anh
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 3 2022 lúc 16:33

\(A=2\left|2-\sqrt{5}\right|-\dfrac{8\left(3+\sqrt{5}\right)}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}\)

\(=2\left(\sqrt{5}-2\right)-\dfrac{8\left(3+\sqrt{5}\right)}{4}=2\sqrt{5}-4-2\left(3+\sqrt{5}\right)\)

\(=2\sqrt{5}-4-6-2\sqrt{5}=-10\)

\(B=\left(\dfrac{2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\left(\dfrac{\sqrt{x}-2+2}{\sqrt{x}-2}\right)\)

\(=\left(\dfrac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}\right)\)

\(=\dfrac{1}{\sqrt{x}-2}.\dfrac{\sqrt{x}-2}{\sqrt{x}}=\dfrac{1}{\sqrt{x}}\)

Frienke De Jong
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 7 2021 lúc 23:24

a)ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)

Ta có: \(D=\dfrac{\sqrt{x}-2}{\sqrt{x}+3}-\dfrac{5}{x+\sqrt{x}-6}+\dfrac{1}{2-\sqrt{x}}\)

\(=\dfrac{x-4\sqrt{x}+4-5-\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{x-5\sqrt{x}-4}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)

DŨNG
Xem chi tiết
Nguyễn Huy Tú
9 tháng 3 2022 lúc 21:18

Với x >= 0 ; x khác 16 

\(B=\dfrac{2x+8+x-4\sqrt{x}-8\sqrt{x}-8}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}=\dfrac{3x-12\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}=\dfrac{3\sqrt{x}}{\sqrt{x}+1}\)

Trang Nguyễn
Xem chi tiết
Yeutoanhoc
28 tháng 6 2021 lúc 10:32

`a)(sqrtx-3)/(sqrtx-2)-(2sqrtx-1)/(sqrtx-1)+(x-2)/(x-3sqrtx+2)`

`=(x-4sqrtx+3-(2sqrtx-1)(sqrtx-2)+x-2)/(x-3sqrtx+2)`

`=(2x-4sqrtx+1-2x+5sqrtx-2)/(x-3sqrtx+2)`

`=(sqrtx-1)/(x-3sqrtx+2)`

`=1/(sqrtx-2)`

`b)((x+2)/(xsqrtx-1)-sqrtx/(x+sqrtx+1)+1/(1-sqrtx)):(sqrtx-1)/2`

`=((x+2-x+sqrtx-x-sqrtx-1)/(xsqrtx-1))*2/(sqrtx-1)`

`=(1-x)/(xsqrtx-1)*2/(sqrtx-1)`

`=(-2(sqrtx+1))/(x+sqrtx+1)`

Nguyễn Lê Phước Thịnh
28 tháng 6 2021 lúc 10:42

a) Ta có: \(A=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}+\dfrac{x-2}{x-3\sqrt{x}+2}\)

\(=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}-\dfrac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}+\dfrac{x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{x-4\sqrt{x}+3-2x+4\sqrt{x}+\sqrt{x}-2+x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{1}{\sqrt{x}-2}\)

b) Ta có: \(\left(\dfrac{x+2}{x\sqrt{x}-1}-\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\)

\(=\dfrac{x+2-\sqrt{x}\left(\sqrt{x}-1\right)-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)

\(=\dfrac{-\sqrt{x}+1-x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)

\(=\dfrac{-\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)

\(=\dfrac{-2\sqrt{x}-2}{x\sqrt{x}-1}\)