Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
An Bùi
Xem chi tiết
Nguyễn Huy Tú
28 tháng 1 2022 lúc 9:34

Gọi Ư(n+1;2n+3) = d ( \(d\in\)N*) 

\(n+1=2n+2\left(1\right);2n+3\left(2\right)\)

Lấy (2 ) - (1) ta được : \(2n+3-2n+2=1⋮d\Rightarrow d=1\)

Vậy ta có đpcm 

Gọi Ư\(\left(3n+2;5n+3\right)=d\)( d \(\in\)N*)

\(3n+2=15n+10\left(1\right);5n+3=15n+9\left(2\right)\)

Lấy (!) - (2) ta được : \(15n+10-15n-9=1⋮d\Rightarrow d=1\)

Vậy ta có đpcm 

Rhider
28 tháng 1 2022 lúc 9:36

a) Gọi \(d\) là UCLN \(\left(n+1,2n+3\right)\left(d\in N\right)\)

Ta có : \(\left[{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2n+2⋮d\\2n+3⋮d\end{matrix}\right.\)

\(\Rightarrow2n+3-\left(2n+2\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\left(đpcm\right)\)

b) Gọi \(d\) là \(UCLN\left(2n+3,4n+8\right)\left(d\in N\right)\)

Ta có : \(\left[{}\begin{matrix}2n+3⋮d\\4n+8⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}4n+6⋮d\\4n+8⋮d\end{matrix}\right.\)

\(\Rightarrow4n+8-\left(4n+6\right)⋮d\)

\(\Rightarrow2⋮d\)

\(\Rightarrow d\in\left\{1;2\right\}\)

Mà 2n+3 là số lẻ nên

\(\Rightarrow d=1\left(đpcm\right)\)

c) Gọi \(d\) là \(UCLN\left(3n+2;5n+3\right)\left(d\in N\right)\)

Ta có : \(\left[{}\begin{matrix}3n+2⋮d\\5n+3⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}15n+10⋮d\\15n+9⋮d\end{matrix}\right.\)

\(\Rightarrow15n+10-\left(15n+9\right)⋮d\)

\(\Rightarrow d=1\left(đpcm\right)\)

Hoàng Ngọc Quang
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 7 2023 lúc 9:15

c: nếu n=3 thì đây ko phải phân số tối giản nha bạn

b: Nếu n=3 thì đây cũng ko phải phân số tối giản nha bạn

a: Nếu n=1 thì đây cũng ko phải phân số tối giản nha bạn

Sad:(
Xem chi tiết
Nguyễn Ngọc Gia Huy
12 tháng 4 2023 lúc 19:28

Gọi Ư( n+1; 2 n+3 ) = d ( d∈N* )

n +1 = 2n + 2 (1) ; 2n+3*)   (2)

Lấy (2 ) - (1) ta được : 2n + 3 - 2n + 2 = 1:d => d =1

vậy ta có đpcm 

gọi Ư ( 3n + 2 ; 5n + 3 ) = d ( d∈N* )

3n +2 = 15 n + 10 (1)  ; 5n + 3 =15n + 9 (2)

lấy (!) - (2)  ta được  15n + 10 - 15n - 9 = 1:d => d = 1

Vậy ta có đpcm 

Nguyễn Thiên Phúc
Xem chi tiết
Akai Haruma
17 tháng 4 2022 lúc 0:10

Lời giải:

a/

Gọi ƯCLN(n+1, 2n+3)=d$ 

Khi đó:

$n+1\vdots d\Rightarrow 2n+2\vdots d(1)$

$2n+3\vdots d(2)$

Từ $(1); (2)\Rightarrow (2n+3)-(2n+1)\vdots d$ hay $1\vdots d$

$\Rightarrow d=1$
Vậy $n+1, 2n+3$ nguyên tố cùng nhau nên phân số đã cho tối giản. 

Câu b,c làm tương tự.

Trúc Giang
Xem chi tiết
Yeutoanhoc
4 tháng 5 2021 lúc 9:42

Đâu ạ =((?

Yeutoanhoc
4 tháng 5 2021 lúc 9:53

Đề thiếu rồi á =((

`n=-3/2=>A=0` ;-;

Nguyễn Việt Lâm
5 tháng 5 2021 lúc 0:32

Gọi \(d=ƯC\left(2n+3;n^2+3n+2\right)\)

\(\Rightarrow2\left(n^2+3n+2\right)-n\left(2n^2+3\right)⋮d\)

\(\Rightarrow3n+4⋮d\)

\(\Rightarrow3\left(2n+3\right)-2\left(3n+4\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Vậy \(2n+3\) và \(n^2+3n+2\) nguyên tố cùng nhau

Đức Phạm
Xem chi tiết
Thanh Tùng DZ
8 tháng 6 2017 lúc 8:39

gọi ( n3 + 2n ; n4 + 3n2 + 1 ) = d

\(\Leftrightarrow\hept{\begin{cases}n^3+2n⋮d\\n^4+3n^2+1⋮d\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}n^4+2n^2⋮d\\n^4+3n^2+1⋮d\end{cases}\Leftrightarrow n^2+1⋮d}\)

Mà n4 + 3n2 + 1 \(⋮\)d

= n4 + 2n2 + n2 + 1

= ( n4 + 2n2 + 1 ) + n2 

= ( n2 + 1 ) 2 + n2 \(⋮\)d

\(\Rightarrow\)n2 \(⋮\)d

\(\Leftrightarrow\)\(⋮\)d

tth_new
8 tháng 6 2017 lúc 8:33

Tham khảo nha bạn! Mình không có thời gian!

Link:

tth 

Đs

tth_new
8 tháng 6 2017 lúc 8:53

Gọi a là ước chung của n^3 +2n và n^4 + 3n^2 + 1

n^3 + 2n chia hết cho a => n(n^3 + 2n) chia hết cho a = > n^4 + 2n^2 chia hết cho a (1)

n^4 + 3n^2 + 1 - (n^4 + 2n^2 )= n^2 +1 chia hết cho a = > (n^2 + 1) ^ 2 = n^4 + 2n^2 + 1  chia hết cho d (2)

Từ (1) và (2), suy ra:

(n^4 + 2n^2 + 1) - (n^4 + 2n ^2 ) chia hết cho a = > 1 chia hết cho a = > a = + - 1

Vậy phân số trên tối giản vì mẫu tử có ước chung là n + 1

Nguyễn Khắc Quang
Xem chi tiết
Nguyễn Minh Đăng
10 tháng 2 2021 lúc 10:18

Gọi \(d=\left(n^3+2n;n^4+3n^2+1\right)\)

\(\Rightarrow\hept{\begin{cases}\left(n^3+2n\right)⋮d\\\left(n^4+3n^2+1\right)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}n\left(n^3+2n\right)=\left(n^4+2n^2\right)⋮d\\\left(n^4+3n^2+1\right)⋮d\end{cases}}\)

\(\Rightarrow\left(n^4+3n^2+1\right)-\left(n^4+2n^2\right)⋮d\)

\(\Leftrightarrow n^2+1⋮d\Leftrightarrow\left(n^2+1\right)^2⋮d\)

\(\Rightarrow\left(n^2+1\right)^2-\left(n^4+2n^2\right)⋮d\Leftrightarrow1⋮d\Rightarrow d=1\)

=> P/s tối giản

Khách vãng lai đã xóa

Gọi \(d=ƯCLN\left(n^3+2n;n^4+3n^2+1\right);\left(d>0\right)\)

\(\Rightarrow\hept{\begin{cases}n^3+2n⋮d\left(1\right)\\n^4+3n^2+1⋮d\end{cases}}\)

Từ \(\left(1\right)\)\(\Rightarrow n\left(n^3+2n\right)⋮d\)

\(\Rightarrow n^4+2n^2⋮d\)

\(\Rightarrow\left(n^4+3n^2+1\right)-\left(n^4+2n^2\right)⋮d\)

\(\Rightarrow n^2+1⋮d\)

\(\Rightarrow\left(n^2+1\right)^2⋮d\)

\(\Rightarrow n^4+2n^2+1⋮d\)

\(\Rightarrow1⋮d\)(do \(n^4+2n^2⋮d\))

Vì \(d>0\)\(\Rightarrow d=1\)

\(\Rightarrow\left(n^3+2n;n^4+3n^2+1\right)=1\)

\(\Rightarrow\frac{n^3+2n}{n^4+3n^2+1}\)là phân số tối tối giản với mọi n nguyên

Khách vãng lai đã xóa
Nguyễn Anh Thư
Xem chi tiết
Võ Lê Hoàng
6 tháng 2 2015 lúc 23:21

Gọi (n^3+2n ; n^4+3n^2+1) là d =>  n^3+2n chia hết cho d và n^4+3n^2+1 chia hết cho d 

 => n(n^3+2n) chia hết cho d hay n^4+2n^2 chia hết cho d 

do đó (n^4+3n^2+1) - (n^4+2n^2) chia hết cho d  hay n^2 +1 chia hết cho d (1)

=> (n^2+1)(n^2+1) chia hết cho d hay n^4+2n^2+1 chia hết cho d  

=>  (n^4+3n^2+1) - (n^4+2n^2+1) chia hết cho d hay n^2 chia hết cho d (2)

Từ (1) và (2) => (n^2+1) - n^2 chia hết cho d  hay 1 chia hết cho d  

Do đó  (n^3+2n ; n^4+3n^2+1) =1 hoặc -1 suy ra \(\frac{n^3+2n}{n^4+3n^2+1}\) là phân số tối giản (Đ.P.C.M)

Trịnh Thị Minh Ngọc
8 tháng 2 2015 lúc 19:54

Gọi (n^3+2n ; n^4+3n^2+1) là d =>  n^3+2n chia hết cho d và n^4+3n^2+1 chia hết cho d 

 => n(n^3+2n) chia hết cho d hay n^4+2n^2 chia hết cho d 

do đó (n^4+3n^2+1) - (n^4+2n^2) chia hết cho d  hay n^2 +1 chia hết cho d (1)

=> (n^2+1)(n^2+1) chia hết cho d hay n^4+2n^2+1 chia hết cho d  

=>  (n^4+3n^2+1) - (n^4+2n^2+1) chia hết cho d hay n^2 chia hết cho d (2)

Từ (1) và (2) => (n^2+1) - n^2 chia hết cho d  hay 1 chia hết cho d  

Do đó  (n^3+2n ; n^4+3n^2+1) =1 hoặc -1 suy ra $\frac{n^3+2n}{n^4+3n^2+1}$n3+2nn4+3n2+1  là phân số tối giản (Đ.P.C.M)

 

nguyentrucphuong
7 tháng 2 2015 lúc 18:16

để phân số ấy là tối giản

\(n^3\)+2n và \(n^4+3n^2\)+1 có ưc(1,-1)

 

nonever
Xem chi tiết
Akai Haruma
27 tháng 7 lúc 16:37

Lời giải:

Giả sử phân số đã cho không tối giản.
Gọi $p$ là ước nguyên tố chung của của $n^3+2n, n^4+3n^2+1$

$\Rightarrow n^3+2n\vdots p$
$\Rightarrow n(n^2+2)\vdots p$

$\Rightarrow n\vdots p$ hoặc $n^2+2\vdots p$.

Nếu $n\vdots p$. Kết hợp với $n^4+3n^2+1\vdots p\Rightarrow 1\vdots p$

$\Rightarrow p=1$ (không tm vì $p$ là snt) 

Nếu $n^2+2\vdots p$.

Kết hợp với $n^4+3n^2+1\vdots p$

$\Rightarrow n^2(n^2+2)+(n^2+2)-1\vdots p$

$\Rightarrow 1\vdots p\Rightarrow p=1$ (không tm vì $p$ là snt)

Vậy điều giả sử không đúng.

$\Rightarrow$ phân số đã cho tối giản.

Cao yến Chi
Xem chi tiết
Nguyễn Phương Uyên
14 tháng 4 2020 lúc 14:31

b1 : 

a, gọi d là ƯC(2n + 1;2n +2) 

=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d

=> 2n + 2 - 2n - 1 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> 2n+1/2n+2 là ps tối giản

Khách vãng lai đã xóa
Nguyễn Thị Huyền Trang
14 tháng 4 2020 lúc 14:50

Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:

A=2n+1/2n+2

Gọi ƯCLN của chúng là a 

Ta có:2n+1 chia hết cho a

           2n+2 chia hết cho a

- 2n+2 - 2n+1 

- 1 chia hết cho a

- a= 1

  Vậy 2n+1/2n+2 là phân số tối giản

B=2n+3/3n+5

Gọi ƯCLN của chúng là a

2n+3 chia hết cho a

3n+5 chia hết cho a

Suy ra 6n+9 chia hết cho a

            6n+10 chia hết cho a

6n+10-6n+9

1 chia hết cho a 

Vậy 2n+3/3n+5 là phân số tối giản

Mình chỉ biết thế thôi!

#hok_tot#

Khách vãng lai đã xóa
Cao yến Chi
15 tháng 4 2020 lúc 13:45

các bn giải hộ mk bài 2 ik

thật sự mk đang rất cần nó!!!

Khách vãng lai đã xóa