Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngô Hồng Thư
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 12 2020 lúc 12:39

uses crt;

var a,m,i:integer;

s:real;

begin

clrscr;

write('Nhap a='); readln(a);

write('Nhap m='); readln(m);

s:=1;

for i:=1 to m do 

  s:=s+1/sqr(a+i);

writeln(s:4:2);

readln;

end.

Kudo Shinichi
Xem chi tiết
Đặng Phương Thảo
Xem chi tiết
nguyen ngoc anh b1 nguye...
24 tháng 5 2016 lúc 16:08

30A=30/2*32+30/3*33+30/4*34=1/2-1/32+1/3-1/33+1/4-1/34=99/100

A=3,3/100

Phạm Thị Thu Liên
26 tháng 6 2016 lúc 10:57

frac2/3 

Thảo Nguyễn
21 tháng 5 2018 lúc 10:07

\(=\frac{1}{30}.\left(\frac{30}{2.32}+\frac{30}{3.33}+\frac{30}{4.34}\right)\)

\(=\frac{1}{30}.\left(\frac{1}{2}-\frac{1}{32}+\frac{1}{3}-\frac{1}{33}+\frac{1}{4}-\frac{1}{34}\right)\)

Tự làm tiếp nhé

Bích Lê
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 4 2022 lúc 18:15

a.

\(tana=\dfrac{sina}{cosa}=\dfrac{1}{15}\Rightarrow sina=\dfrac{cosa}{15}\)

\(\Rightarrow sin2a=2sina.cosa=\dfrac{2cosa}{15}.cosa=\dfrac{2}{15}cos^2a=\dfrac{2}{15}.\dfrac{1}{1+tan^2a}=\dfrac{2}{15}.\dfrac{1}{1+\dfrac{1}{15^2}}=\dfrac{15}{113}\)

b.

\(5^2=\left(3sina+4cosa\right)^2\le\left(3^2+4^2\right)\left(sin^2+cos^2a\right)=25\)

Đẳng thức xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}\dfrac{sina}{3}=\dfrac{cosa}{4}\\3sina+4cosa=5\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}sina=\dfrac{3}{5}\\cosa=\dfrac{4}{5}\end{matrix}\right.\)

Nguyễn Việt Lâm
16 tháng 4 2022 lúc 18:18

c.

\(\dfrac{1}{tan^2a}+\dfrac{1}{cot^2a}+\dfrac{1}{sin^2a}+\dfrac{1}{cos^2a}=7\)

\(\Leftrightarrow\dfrac{cos^2a}{sin^2a}+\dfrac{sin^2a}{cos^2a}+\dfrac{1}{sin^2a}+\dfrac{1}{cos^2a}=7\)

\(\)\(\Leftrightarrow\dfrac{sin^4a+cos^4a}{sin^2a.cos^2a}+\dfrac{sin^2a+cos^2a}{sin^2a.cos^2a}=7\)

\(\Leftrightarrow\dfrac{\left(sin^2a+cos^2a\right)^2-2sin^2a.cos^2a}{sin^2a.cos^2a}+\dfrac{1}{sin^2a.cos^2a}=7\)

\(\Leftrightarrow\dfrac{2}{sin^2a.cos^2a}=9\)

\(\Leftrightarrow\dfrac{8}{\left(2sina.cosa\right)^2}=9\)

\(\Leftrightarrow\dfrac{8}{sin^22a}=9\)

\(\Leftrightarrow sin^22a=\dfrac{8}{9}\)

Nguyễn Huyền Anh
Xem chi tiết
Nguyễn thành Đạt
28 tháng 1 2023 lúc 21:03

\(A=\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}\)

\(A=\dfrac{a^2bc}{ab+a^2bc+abc}+\dfrac{b}{bc+b+abc}+\dfrac{c}{ac+c+1}\)

\(A=\dfrac{a^2bc}{ab\left(1+ac+c\right)}+\dfrac{b}{b\left(c+1+ac\right)}+\dfrac{c}{ac+c+1}\)

\(A=\dfrac{ac+1+c}{ac+c+1}\)

\(A=1\)

 

Lê Song Phương
28 tháng 1 2023 lúc 21:05

\(A=\dfrac{ab}{ab+a+1}+\dfrac{bc}{bc+b+1}+\dfrac{ca}{ca+c+1}\)

\(A=\dfrac{abc}{abc+ac+c}+\dfrac{bc}{bc+b+abc}+\dfrac{ca}{ca+c+1}\)

\(A=\dfrac{1}{1+ac+c}+\dfrac{c}{c+1+ac}+\dfrac{ca}{ca+c+1}\)

\(A=1\)

Nguyễn Thị Thanh Tâm
Xem chi tiết
Fudo
22 tháng 7 2018 lúc 21:28

\(\text{Tìm các phép tính đúng :}\)

\(a,\text{ }a\text{ : }1=1\)                              \(b,\text{ }b\text{ : }1=1\)                    \(c,\text{ }a\text{ : }0=0\)                 \(d,\text{ }1\text{ : }d=d\)

                             \(\text{Theo mình thấy thì các phép : a , b , d đều là các phép tính đúng.}\)

           \(c\text{ Không phải phép tính đúng vì }0\text{ không thể chia cho một số nào đó .}\)

Diệu Anh
22 tháng 7 2018 lúc 21:14

đặt số thực vào mà thử

đúng ko

đúng k nhé

trần thị kim thư
Xem chi tiết
Akai Haruma
28 tháng 8 2021 lúc 10:24

Lời giải:
a. ĐKXĐ: $a\geq 0; a\neq 1$

b.

\(P=\left[\frac{\sqrt{a}(\sqrt{a}+1)}{\sqrt{a}+1}+1\right].\left[\frac{\sqrt{a}(\sqrt{a}-1)}{\sqrt{a}-1}-1\right].\frac{\sqrt{2}(\sqrt{2}-1)}{\sqrt{2}-1}\)

\(=(\sqrt{a}+1)(\sqrt{a}-1).\sqrt{2}=\sqrt{2}(a-1)\)

c.

\(P=\sqrt{2}(\sqrt{2+\sqrt{2}}-1)=\sqrt{4+2\sqrt{2}}-\sqrt{2}\)

Nhan Thanh
28 tháng 8 2021 lúc 10:24

a. ĐKXĐ: \(\left\{{}\begin{matrix}\sqrt{a}\ge0\\\sqrt{a}-1\ne0\\\sqrt{a}+1\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a\ge0\\\sqrt{a}\ne1\\\sqrt{a}\ne-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a\ge0\\a\ne1\end{matrix}\right.\)

b. \(P=\left(\dfrac{a+\sqrt{a}}{\sqrt{a}+1}+1\right).\left(\dfrac{a-\sqrt{a}}{\sqrt{a}-1}-1\right).\dfrac{2-\sqrt{2}}{\sqrt{2}-1}\)

\(=\left[\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}+1\right].\left[\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}-1\right].\dfrac{\sqrt{2}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}\)

\(=\left(\sqrt{a}+1\right).\left(\sqrt{a}-1\right).\sqrt{2}=2\left(a-1\right)=2a-2\)

 

Nguyễn Lê Phước Thịnh
28 tháng 8 2021 lúc 14:59

a: ĐKXĐ: \(\left\{{}\begin{matrix}a\ge0\\a\ne1\end{matrix}\right.\)

b: Ta có: \(P=\left(\dfrac{a+\sqrt{a}}{\sqrt{a}+1}+1\right)\cdot\left(\dfrac{a-\sqrt{a}}{\sqrt{a}-1}-1\right)\cdot\dfrac{2-\sqrt{2}}{\sqrt{2}-1}\)

\(=\left(\sqrt{a}+1\right)\cdot\left(\sqrt{a}-1\right)\cdot\sqrt{2}\)

\(=\sqrt{2}a-\sqrt{2}\)

Mam city
Xem chi tiết
Pham Thi Ngoc Minh
9 tháng 4 2020 lúc 11:41

a) Ta có:

      1/( 2.3 ) = ( 3 - 2 )/( 2.3 )

                     = 3/( 2.3 ) - 2/( 2.3 )

                     = 1/2 - 1/3.

     1/( 3.4 ) = ( 4 - 3 )/( 3.4 )

                     = 4/( 3.4 ) - 3/( 3.4 )

                     = 1/3 - 1/4.

b) 

Ta có:

A = 1/( 5.6 ) + 1/( 6.7 ) + 1/( 7.8 ) + ..... + 1/( 2019.2020 )

A = 1/5 - 1/6 + 1/6 - 1/7 + 1/7 - 1/8 + ..... + 1/2019 - 1/2020

A = 1/5 - 1/2020

A = 403/2020

Vậy A = 403/2020.

Khách vãng lai đã xóa
Nobi Nobita
9 tháng 4 2020 lúc 16:35

a) Ta có: \(\frac{1}{2.3}=\frac{3-2}{2.3}=\frac{3}{2.3}-\frac{2}{2.3}=\frac{1}{2}-\frac{1}{3}\)

\(\frac{1}{3.4}=\frac{4-3}{3.4}=\frac{4}{3.4}-\frac{3}{3.4}=\frac{1}{3}-\frac{1}{4}\)

b) Ta có: \(A=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+.......+\frac{1}{2019.2020}\)

\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+........+\frac{1}{2019}-\frac{1}{2020}\)

\(=\frac{1}{5}-\frac{1}{2020}=\frac{403}{2020}\)

Khách vãng lai đã xóa
Trang Nguyễn
Xem chi tiết
Nguyễn Hoàng Minh
16 tháng 11 2021 lúc 17:22

\(a,P=\dfrac{2+\sqrt{\left(1-a\right)\left(1+a\right)}}{\sqrt{1+a}}:\dfrac{2+\sqrt{\left(1-a\right)\left(1+a\right)}}{\sqrt{\left(1-a\right)\left(1+a\right)}}\left(-1< a< 1\right)\\ P=\dfrac{2+\sqrt{\left(1-a\right)\left(1+a\right)}}{\sqrt{1+a}}\cdot\dfrac{\sqrt{\left(1-a\right)\left(1+a\right)}}{2+\sqrt{\left(1-a\right)\left(1+a\right)}}\\ P=\sqrt{1-a}\\ b,a=\dfrac{24}{49}\Leftrightarrow1-a=\dfrac{25}{49}\\ \Leftrightarrow P=\sqrt{1-a}=\sqrt{\dfrac{25}{49}}=\dfrac{5}{7}\\ c,P=2\Leftrightarrow1-a=4\Leftrightarrow a=-3\left(ktm\right)\Leftrightarrow a\in\varnothing\)

Minz Ank
Xem chi tiết