CMR : Không có đa thức \(f(x)\) nào với hệ số nguyên nào \(f(7)=5\) và \(f\left(15\right)=9\)
Chứng minh Không có đa thức f(x) nào với hệ số nguyên mà f(7)=5,f(15)=9
CMR: Không có đa thức f(x) nào mà: \(f\left(x\right)=a_nx^n+a_{n-1}x^{n-1}+.........+a_1x+a_0\left(a_1,a_2,a_3,............,a_n\in Z\right)\) có thể nhận giá trị f(7)=15 và f(15)=9
Ta có \(f\left(7\right)=15\Rightarrow f\left(7\right)-15=0\Rightarrow f\left(x\right)-15=P\left(x\right).\left(x-7\right)\)
\(\Rightarrow f\left(15\right)-15=P\left(x\right).8\Rightarrow-15=P\left(x\right).8\Rightarrow P\left(x\right)=\dfrac{-3}{4}\). (vô lí vì P(x) có các hệ số đều nguyên).
Vậy...
Giả sử F(x) là 1 đa thức với hệ số nguyên và không có số nào trong các số F(0), F(2), ... , F(2015) chia hết cho 2016. CMR: ĐA thức F(x) không có nghiệm nguyên
Câu hỏi của trần manh kiên - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo câu tương tự tại đây nhé.
Cho đa thức f(x) với hệ số nguyên. CMR: Với 2 số nguyên phân biệt a và b thì \(f\left(a\right)-f\left(b\right)⋮\left(a-b\right)\)
Lời giải:
Đặt $f(x)=a_0+a_1x+a_2x^2+..+a_nx^n$ với $a_i$ nguyên với $i=\overline{0,n}$
Ta có:
\(f(a)=a_0+a_1a+a_2a^2+...+a_na^n; f(b)=a_0+a_1b+a_2b^2+...+a_nb^n\)
\(\Rightarrow f(a)-f(b)=a_1(a-b)+a_2(a^2-b^2)+...+a_n(a^n-b^n)\)
Dễ thấy: $a^j-b^j\vdots a-b$ với mọi $j\geq 1$ nên $f(a)-f(b)\vdots a-b$
Ta có đpcm.
Cho đa thức f(x) với hệ số nguyên. CMR: Với 2 số nguyên phân biệt a và b thì \(f\left(a\right)-f\left(b\right)⋮\left(a-b\right)\)
Giả sử \(f\left(x\right)=m_nx^n+m_{n-1}x^{n-1}+...+m_1x+m_0\) với \(m_0;m_1;...;m_n\in Z\).
Ta có \(f\left(a\right)-f\left(b\right)=m_n\left(a^n-b^n\right)+m_{n-1}\left(a^{n-1}-b^{n-1}\right)+...+m_1\left(a-b\right)\).
Dễ thấy tổng trên chia hết cho a - b với mọi a, b nguyên.
Vậy ta có đpcm.
cho f(x) là đa thức với hệ số nguyên a, b là các số nguyên
a. CMR f(a)-f(b) chia hết cho a-b
b.Cố thể xảy ra đồng thời f(5)=7 và f(19)=15 không?
TK: Toán 8 - đa thức, chia hết | Cộng đồng Học sinh Việt Nam - HOCMAI Forum
Lời giải:
Đặt $f(x)=a_0+a_1x+a_2x^2+....+a_nx^n$ với $a_i\in\mathbb{Z}$ khi $i=\overline{0,n}$
$f(a)-f(b)=(a_0+a_1.a+a_2a^2+...+a_na^n)-(a_0+a_1b+a_2b^2+...+a_nb^n)$
$=a_1(a-b)+a_2(a^2-b^2)+...+a_n(a^n-b^n)$
b. Theo kq phần a thì $f(19)-f(5)\vdots (19-5)\vdots 7$
Mà $f(5)\vdots 7$ nên $f(19)\vdots 7$ hay $15\vdots 7$ (vô lý)
Do đó không thể xảy ra đồng thời hệ thức trên.
Vì $a^i-b^i$ với mọi $i=1,2,..,n$ đều chia hết cho $a-b$ theo phân tích trong hằng đẳng thức đáng nhớ
$\Rightarrow f(a)-f(b)\vdots a-b$
b.
Cho đa thức f(x) với hệ số nguyên; cho biết f(5)=18, f(6)=50. CMR: \(f\left(11\right)⋮30\)
Đặt \(g\left(x\right)=32x-142\).
Ta có \(f\left(5\right)-g\left(5\right)=f\left(6\right)-g\left(6\right)=0\Rightarrow f\left(x\right)-g\left(x\right)=Q\left(x\right)\left(x-5\right)\left(x-6\right)\).
\(\Rightarrow f\left(11\right)=g\left(11\right)+Q\left(x\right).30=210+Q\left(x\right).30⋮30\).
Mình làm theo kiểu khác để cho bạn rõ hơn:
Đặt \(g\left(x\right)=32x-142\Rightarrow\left\{{}\begin{matrix}g\left(5\right)=18\\g\left(6\right)=50\end{matrix}\right.\).
Đặt \(h\left(x\right)=f\left(x\right)-g\left(x\right)\). Khi đó \(h\left(5\right)=f\left(5\right)-g\left(5\right)=18-18=0;h\left(6\right)=f\left(6\right)=g\left(6\right)=50-50=0\).
Do \(h\left(5\right)=h\left(6\right)=0\) nên \(h\left(x\right)\) chia hết cho hai đa thức \(x-5\) và \(x-6\) (đoạn này mình mong bạn hiểu).
Từ đó tồn tại Q(x) sao cho \(h\left(x\right)=\left(x-5\right)\left(x-6\right)Q\left(x\right)\).
Suy ra \(f\left(x\right)=g\left(x\right)+h\left(x\right)=32x-142+\left(x-5\right)\left(x-6\right)Q\left(x\right)\Rightarrow f\left(11\right)=32.11-142+5.6.Q\left(x\right)=210+30.Q\left(6\right)\).
Do f(x) có các hệ số nguyên, g(x) có các hệ số nguyên nên h(x) cũng có các hệ số nguyên.
Do đó Q(x) cũng có các hệ số nguyên.
Suy ra \(f\left(6\right)=210+30.Q\left(x\right)⋮30\).
Cho f(x) là 1 đa thức với hệ số nguyên a, b là 2 số nguyên .
a,Chứng minh rằng f(a)-f(b) chia hết cho a-b
b, Có thể xảy ra đồng thời f(5)=7 và f(9)=15 hay không
a) Đặt f(x)=c_1.x^n + c_2.x^(n - 1) + ... + c_(n - 1).x^2 + c_n.x
Ta có:
a^n − b^n
= (a−b).(a^(n−1) + a^(n−2).b + ... + b^(n−1))
⇒f(a) − f(b) = (a − b).P(a, b) với P(a, b) là 1 đa thức chứa a, b với hệ số nguyên
Suy ra f(a) - f(b) chia hết cho (a - b)
Cho f(x) là 1 đa thức với hệ số nguyên a, b là 2 số nguyên khác 0 , a,Chứng minh rằng f(a)-f(b) chia hết cho a-b
b, Có thể xảy ra đồng thời f(5)=7 và f(9)=15 hay không
chứng minh rằng không tồn tại đa thức f(x) với hệ số nguyên thỏa mãn f(7)=5,f(15)=9