Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Huyền Diệp
Xem chi tiết
Nguyễn Hoàng Minh
26 tháng 10 2021 lúc 7:57

Áp dụng BĐT cosi:

\(A=\sqrt{\left(2x+1\right)\left(x+2\right)}+2\sqrt{x+3}-2x\\ A\le\dfrac{2x+1+x+2}{2}+\dfrac{4+x+3}{2}-2x\\ A\le\dfrac{3x+3}{2}+\dfrac{x+7}{2}-2x=\dfrac{3x+3+x+7-4x}{2}=5\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}2x+1=x+2\\4=x+3\end{matrix}\right.\Leftrightarrow x=1\)

CCDT
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 3 2021 lúc 21:29

\(P=\sqrt{\left(x+2\right)\left(2x+1\right)}+2\sqrt{x+3}-2x\)

\(P\le\dfrac{1}{2}\left(x+2+2x+1\right)+\dfrac{1}{2}\left(4+x+3\right)-2x=5\)

\(P_{max}=5\) khi \(x=1\)

Minh Triều
Xem chi tiết
nguyen thi thu Thuy
20 tháng 11 2015 lúc 20:23

\(A=\sqrt{2x^2+5x+2}+2\sqrt{x+3}-2x\)

\(2A=2\sqrt{2x^2+5x+2}+4\sqrt{x+3}-4x\)

\(2A=2\sqrt{\left(2x+1\right)\left(x+2\right)}+4\sqrt{x+3}-4x\)

\(\le2x+1+x+2+4+x+3-4x=10\)

=>2A\(\le10\Rightarrow A\le5\)

dấu bằng xảy ra \(\Leftrightarrow2x+1=x+2\)

và x+3=4

=>x=1

maxA=5 khi x=1

 

 

hoangtiendat
20 tháng 11 2015 lúc 18:55

Khó vậy ta ????

thu trang
Xem chi tiết
Triều Nguyễn Quốc
Xem chi tiết
camcon
Xem chi tiết
Nguyễn Hoàng Minh
30 tháng 12 2021 lúc 23:09

\(5x^2+2xy+2y^2-\left(4x^2+4xy+y^2\right)=\left(x-y\right)^2\ge0\\ \Leftrightarrow5x^2+2xy+2y^2\ge4x^2+4xy+y^2=\left(2x+y\right)^2\)

\(\Leftrightarrow P\le\dfrac{1}{2x+y}+\dfrac{1}{2y+z}+\dfrac{1}{2z+x}=\dfrac{1}{9}\left(\dfrac{9}{x+x+y}+\dfrac{9}{y+y+z}+\dfrac{9}{z+z+x}\right)\\ \Leftrightarrow P\le\dfrac{1}{9}\left(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{y}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{1}{z}+\dfrac{1}{z}+\dfrac{1}{x}\right)\\ \Leftrightarrow P\le\dfrac{1}{9}\left(\dfrac{3}{x}+\dfrac{3}{y}+\dfrac{3}{z}\right)=\dfrac{1}{3}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=1\)

Dấu \("="\Leftrightarrow x=y=z=1\)

Nguyễn Việt Lâm
30 tháng 12 2021 lúc 23:10

\(\sqrt{5x^2+2xy+2y^2}=\sqrt{4x^2+2xy+y^2+x^2+y^2}\ge\sqrt{4x^2+2xy+y^2+2xy}=2x+y\)

\(\Rightarrow\dfrac{1}{\sqrt{5x^2+2xy+2y^2}}\le\dfrac{1}{2x+y}=\dfrac{1}{x+x+y}\le\dfrac{1}{9}\left(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{y}\right)=\dfrac{1}{9}\left(\dfrac{2}{x}+\dfrac{1}{y}\right)\)

Tương tự:

\(\dfrac{1}{\sqrt{5y^2+2yz+2z^2}}\le\dfrac{1}{9}\left(\dfrac{2}{y}+\dfrac{1}{z}\right)\) ; \(\dfrac{1}{\sqrt{5z^2+2zx+2x^2}}\le\dfrac{1}{9}\left(\dfrac{2}{z}+\dfrac{1}{x}\right)\)

Cộng vế:

\(P\le\dfrac{1}{9}\left(\dfrac{3}{x}+\dfrac{3}{y}+\dfrac{3}{z}\right)=1\)

\(P_{max}=1\) khi \(x=y=z=1\)

nguyen van dung
Xem chi tiết
nguyen van dung
Xem chi tiết
Lầy Văn Lội
3 tháng 5 2017 lúc 15:26

nhờ casio và 1 số suy đoán  ta biết được max f(x) =7 khi x=0 ,giờ AM-GM ngược thôi :v

ta có: \(f\left(x\right)=\sqrt{\left(2x+3\right)\left(x+3\right)}+\sqrt{4\left(x+4\right)}-2x\)

Áp dụng bất đẳng thức cauchy :

\(\sqrt{\left(2x+3\right)\left(x+3\right)}\le\frac{1}{2}\left(3x+6\right)\)

\(\sqrt{4\left(x+4\right)}\le\frac{1}{2}\left(x+8\right)\)

\(\Rightarrow f\left(x\right)\le\frac{1}{2}\left(4x+14\right)-2x=2x+7-2x=7\)

đẳng thức xảy ra khi \(\hept{\begin{cases}2x+3=x+3\\4=x+4\end{cases}\Leftrightarrow x=0}\)

nguyen van dung
2 tháng 5 2017 lúc 22:54

Còn ý liền trước nó nữa: 

Tìm tất cả các cặp số (x, y)  thỏa mãn \(2\left(x\sqrt{y-4}+y\sqrt{x-4}\right)=xy\)

LÀM GIÚP MK CÂU TÌM GTLN NHA

HELP ME, PLEASE!

Phạm Thị Thùy Dương
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 8 2021 lúc 13:44

a: ĐKXĐ: \(\left[{}\begin{matrix}x\ge3\\x\le2\end{matrix}\right.\)

b: ĐKXĐ: \(\left[{}\begin{matrix}x>\dfrac{2\sqrt{14}}{7}\\x< -\dfrac{2\sqrt{14}}{7}\end{matrix}\right.\)

c: ĐKXĐ: \(x=\dfrac{1}{3}\)

d: ĐKXĐ: \(-\dfrac{2}{3}< x\le\sqrt{3}\)