Tìm x
\(\dfrac{15x}{x^2+3x-4}-1=12\left(\dfrac{1}{x+4}+\dfrac{1}{3x-3}\right)\)
\(\dfrac{3}{x-5}-\dfrac{x+1}{x\left(x-5\right)}\)
\(\dfrac{8\left(y+2\right)}{3x^2}.\dfrac{15x^5}{4\left(y+2\right)^2}\)
\(\dfrac{8\left(y-1\right)}{3x^2-3}:\dfrac{4\left(y-1\right)^3}{x^2-2x+1}\)
\(\dfrac{3}{x-5}-\dfrac{x+1}{x\left(x-5\right)}\left(dkxd:x\ne0,x\ne5\right)\\ =\dfrac{3x-x-1}{x\left(x-5\right)}=\dfrac{2x-1}{x^2-5x}\)
----------------------------------------
\(\dfrac{8\left(y+2\right)}{3x^2}.\dfrac{15x^5}{4\left(y+2\right)^2}\left(dkxd:x\ne0,y\ne-2\right)\\ =\dfrac{8}{4}.\dfrac{15x^2.x^3}{3x^2}=10x^3\)
------------------------------------------
\(\dfrac{8\left(y-1\right)}{3x^2-3}:\dfrac{4\left(y-1\right)^3}{x^2-2x+1}\left(dkxd:x\ne1,x\ne-1\right)\\ =\dfrac{8\left(y-1\right)}{3\left(x-1\right)\left(x+1\right)}.\dfrac{\left(x-1\right)^2}{4\left(y-1\right)^3}\\ =\dfrac{2\left(x-1\right)}{3\left(x+1\right)\left(y-1\right)^2}\)
Giải phương trình \(\dfrac{15x}{x^2+3x-4}-1=12.\left(\dfrac{1}{x+4}+\dfrac{1}{3x-3}\right)\)
\(\dfrac{15x}{x^2+3x-4}-1=12\left(\dfrac{1}{x+4}+\dfrac{1}{3x-3}\right)\)
ĐKXĐ: \(\left\{{}\begin{matrix}x\ne-4\\x\ne1\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{15x-x^2-3x+4}{\left(x-1\right)\left(x+4\right)}=12\left(\dfrac{3x-3+x+4}{3\left(x+4\right)\left(x-1\right)}\right)\)
\(\Leftrightarrow\dfrac{3(12x-x^2+4)}{3\left(x-1\right)\left(x+4\right)}=12\left(\dfrac{4x+1}{3\left(x+4\right)\left(x-1\right)}\right)\)
\(\Leftrightarrow-x^2+12x+4=16x+4\)
\(\Leftrightarrow x^2+4x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(n\right)\\x=-4\left(l\right)\end{matrix}\right.\)
Vậy \(S=\left\{0\right\}\)
Tìm x:
a) \(\dfrac{15x}{x^2+3x-4}-1=12\left(\dfrac{1}{x+4}+\dfrac{1}{3x-3}\right)\)
b) \(\left|\left|x-2\right|+3\right|=5\)
a) \(\Leftrightarrow\dfrac{15x}{x^2+3x-4}-1=\dfrac{12}{x+4}+\dfrac{4}{x-1}\)
\(\Leftrightarrow\dfrac{15x}{x^2+4x-x-4}-\dfrac{12}{x+4}-\dfrac{4}{x-1}=1\)
\(\Leftrightarrow\dfrac{15x}{\left(x-1\right)\left(x+4\right)}-\dfrac{12}{x+4}-\dfrac{4}{x-1}=1\)
\(\Leftrightarrow\dfrac{15x-12x+12-4x-16}{\left(x-1\right)\left(x+4\right)}=1\)
\(\Leftrightarrow\dfrac{-1}{x-1}=1\)
\(\Leftrightarrow x-1=-1\)
\(\Rightarrow x=0\)
tick cho t vs hik
b) \(\Leftrightarrow\left|x-2\right|+3=5\)
\(\Leftrightarrow\left|x-2\right|=5-3\)
\(\Leftrightarrow\left|x-2\right|=2\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=2\\x-2=-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=0\end{matrix}\right.\)
\(\dfrac{15x}{x^2+3x-4}-1=12\left(\dfrac{1}{x+4}+\dfrac{1}{3x-3}\right)\)
\(\Rightarrow\dfrac{15x}{x^2+3x-4}-1=\dfrac{12}{x+4}+\dfrac{12}{3x-3}\)
\(\Rightarrow\dfrac{15}{x^2+3x-4}-1=\dfrac{36x-36}{\left(x+4\right)\left(3x-3\right)}+\dfrac{12x+48}{\left(x+4\right)\left(3x-3\right)}\)
\(\Rightarrow\dfrac{15}{x^2+3x-4}-1=\dfrac{36x-36+12x+48}{\left(x+4\right)\left(3x-3\right)}\)
\(\Rightarrow\dfrac{15}{x^2+3x-4}-1=\dfrac{48x+12}{x\left(3x-3\right)+4\left(3x-3\right)}\)
\(\Rightarrow\dfrac{15}{x^2+3x-4}-1=\dfrac{48x+12}{3x^2-3x+12x-12}\)
\(\Rightarrow\dfrac{15}{x^2+3x-4}=\dfrac{48x+12}{3x^2+9x-12}\)
\(\Rightarrow15\left(3x^2+9x-12\right)=\left(48x+12\right)\left(x^2+3x-4\right)\)
Nhân ra rồi tính là ok
1.rút gọn biểu thuc P=\(\dfrac{2}{x+3}+\dfrac{1}{x-3}+\dfrac{9-x}{9-x^2}\) với x\(\ne-3vàx\ne3\)
2.thực hiện phép tính \(\left(2x^4-3x^3-3x^2+6x-1\right):\left(x^2-2\right)\)
\(\left(15x^4y^6-12^3y^4-18x^2y^3\right):\left(-6x^2y^2\right)\)
Giải phương trình:
a) \(\dfrac{15x}{x^2+3x-4}-1=12\left(\dfrac{1}{x+4}+\dfrac{1}{3x-3}\right)\dfrac{ }{ }\)
b) \(\dfrac{1}{x-1}+\dfrac{1}{x-2}=\dfrac{1}{x+2}+\dfrac{1}{x+1}\)
b)
\(\dfrac{1}{x-1}+\dfrac{1}{x-2}=\dfrac{1}{x+2}+\dfrac{1}{x+1}\)
\(\Leftrightarrow\dfrac{1}{x-1}-\dfrac{1}{x+1}=\dfrac{1}{x+2}-\dfrac{1}{x-2}\)
\(\Leftrightarrow\dfrac{2}{\left(x-1\right)\left(x+1\right)}=\dfrac{-4}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow\dfrac{2}{x^2-1}=\dfrac{-4}{x^2-4}\)
\(\Leftrightarrow2x^2-8=-4x^2+4\) ( điều kiện \(x\ne\pm1,x\ne\pm2\) )
\(\Leftrightarrow6x^2=12\)
\(\Rightarrow x=\pm\sqrt{2}\)
a )
\(\dfrac{15x}{x^2+3x-4}-1=12\left(\dfrac{1}{x+4}+\dfrac{1}{3x-3}\right)\)
\(\Leftrightarrow\dfrac{15x-\left(x^2+3x-4\right)}{x^2+3x-4}=\dfrac{12}{x+4}+\dfrac{12}{3x-3}\)
\(\Leftrightarrow\dfrac{12x-x^2+4}{x^2+4x-x-4}=\dfrac{48x+12}{\left(x+4\right)\left(3x-3\right)}\)
\(\Leftrightarrow\dfrac{12x-x^2+4}{x\left(x+4\right)-\left(x+4\right)}=\dfrac{48x+12}{3\left(x+4\right)\left(x-1\right)}\)
\(\Leftrightarrow\dfrac{12x-x^2+4}{\left(x+4\right)\left(x-1\right)}=\dfrac{48x+12}{3\left(x+4\right)\left(x-1\right)}\)
\(\Leftrightarrow12x-x^2+4=\dfrac{48x+12}{3}\)
\(\Leftrightarrow12x-x^2+4=16x+4\)
\(\Leftrightarrow x^2+8x=0\)
\(\Delta=b^2-4ac\)
\(\Delta=64\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-8+\sqrt{64}}{2}=0\left(nhận\right)\\x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-8-\sqrt{64}}{2}=-8\left(loại\right)\end{matrix}\right.\)
Do \(x=-8\) không thỏa mãn phương trình
Vậy \(x=0\)
rút gọn các phân thức
a,\(\dfrac{7xy^3\left(x-2y\right)}{14x^2y^2\left(x-2y\right)^2}\)
b,\(\dfrac{4a^2-8ab}{2\left(2b-a\right)^3}\)
c,\(\dfrac{3x^3-3x}{x^4-1}\)
d,\(\dfrac{45x\left(3-x\right)}{15x\left(x-3\right)^3}\)
c: \(=\dfrac{3x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x^2+1\right)}=\dfrac{3x}{x^2+1}\)
câu 1 \(\dfrac{3\left(2x+1\right)}{4}\)-\(\dfrac{2\left(3x-1\right)}{5}\)=5
câu 2 \(\dfrac{5x-3}{6}\)+5-\(\dfrac{7x-1}{4}\)=\(\dfrac{x+2}{12}\)
câu 3 \(\dfrac{\left(x-1\right)\left(x+1\right)}{2}\)+\(\dfrac{3\left(x+1\right)}{4}\)=\(\dfrac{\left(x-2\right)^2}{2}\)
câu 4 \(\dfrac{\left(x-4\right)^3}{6}\)+1=\(\dfrac{x\left(x+1\right)}{2}\)-\(\dfrac{\left(x-5\right)\left(x+5\right)}{3}\)
câu 5 \(\dfrac{3\left(x+2\right)^3}{5}\)-\(\dfrac{\left(x-1\right)^2}{10}\)=\(\dfrac{\left(x-3\right)\left(x+3\right)}{2}\)
-Mình xin lỗi.Nhưng thầy mình chưa giảng về bài này và làm bài tập với lại thầy bắt phải làm nên ko cho điểm xấu nên các bạn giúp mình được ko.Mình cầu xin sự giúp đỡ của các bạn và cảm ơn rất nhiều ( các bạn biết câu nào làm câu đó nha <:{ )
Câu 1:
=>15(2x+1)-8(3x-1)=100
=>30x+15-24x+8=100
=>6x+23=100
hay x=77/6
Câu 2:
=>2(5x-3)+12-3(7x-1)=x+2
=>10x-6+12-21x+3-x-2=0
=>-12x=-7
hay x=7/12
Câu 3:
\(\Leftrightarrow2\left(x^2-1\right)+3\left(x+1\right)=2\left(x^2-4x+4\right)\)
\(\Leftrightarrow2x^2-2+3x+3-2x^2+8x-8=0\)
=>11x-7=0
hay x=-7/11
Câu 4:
(x - 4)^3/6 + 1 = x(x + 1)/2 - (x - 5)(x + 5)/3
<=> (x - 4)^3 + 6/6 = x^2 + x/2 - x^2 - 25/3
<=> (x - 4)^3 + 6/6 = 3x^2 + 3x - 2x^2 + 50/6
<=> (x - 4)^3 + 6 = 3x^2 + 3x - 2x^2 + 50
<=> x^3 - 12x^2 + 48x - 58 = x^2 + 3x + 50
<=> x^3 -13x^2 + 45x - 108 = 0
Đến đây bạn bấm máy nhẩm nghiệm là ra nhé
Câu 5:
3(x + 2)^3/5 - (x - 1)^2/10 = (x - 3)(x + 3)/2
<=> 6(x + 2)^3 - (x - 1)^2/10 = 5(x^2 - 9)/10
<=> 6(x + 2)^3 - (x - 1)^2 = 5(x^2 - 9)
<=> 6x^3 + 36x^2 + 72x + 48 - x^2 + 2x - 1 - 5x^2 + 45 = 0
<=> 6x^3 + 30x^2 + 74x + 92 = 0
Đến đây bạn bấm máy nhẩm nghiệm như câu 4 nhé
Tìm x:
a) \(\dfrac{2x-3}{3}+\dfrac{-3}{2}=\dfrac{5-3x}{6}-\dfrac{1}{3}\)
b) \(\dfrac{2}{3x}-\dfrac{3}{12}=\dfrac{4}{5}-\left(\dfrac{7}{x}-2\right)\)
a: =>2(2x-3)-9=5-3x-2
=>4x-6-9=-3x+3
=>4x-15=-3x+3
=>7x=18
=>x=18/7
b: =>\(\dfrac{2}{3x}-\dfrac{3}{12}=\dfrac{4}{5}-\dfrac{21}{3x}+2\)
=>\(\dfrac{23}{3x}=\dfrac{4}{5}+2+\dfrac{1}{4}=\dfrac{61}{20}\)
=>3x=460/61
=>x=460/183
1. \(\dfrac{5\left(x-1\right)+2}{6}-\dfrac{7x-1}{4}=\dfrac{2\left(2x+1\right)}{7}-5\)
2. \(x-\dfrac{3\left(x+30\right)}{15}-24\dfrac{1}{2}=\dfrac{7x}{10}-\dfrac{2\left(10x+2\right)}{5}\)
3. \(14\dfrac{1}{2}-\dfrac{2\left(x+3\right)}{5}=\dfrac{3x}{2}-\dfrac{2\left(x-7\right)}{3}\)
4. \(\dfrac{x+1}{3}+\dfrac{3\left(2x+1\right)}{4}=\dfrac{2x+3\left(x+1\right)}{6}+\dfrac{7+12x}{12}\)
5. \(\dfrac{3\left(2x-1\right)}{4}-\dfrac{3x+1}{10}+1=\dfrac{2\left(3x+2\right)}{5}\)
6. \(x-\dfrac{3}{17}\left(2x-1\right)=\dfrac{7}{34}\left(1-2x\right)+\dfrac{10x-3}{2}\)
7. \(\dfrac{3\left(x-3\right)}{4}+\dfrac{4x-10,5}{10}=\dfrac{3\left(x+1\right)}{5}+6\)
8. \(\dfrac{2\left(3x+1\right)+1}{4}-5=\dfrac{2\left(3x-1\right)}{5}-\dfrac{3x+2}{10}\)