CMR : Nếu n \(⋮\) 3 thì A(n) = 32n + 3n + 1 \(⋮\) 13 Với \(\forall\) n \(\in\) N
1, CMR nếu a, b, c là các số tự nhiên đôi một nguyên tố cùng nhau thì \(\left(ab+bc+ca,abc\right)=1\)
2, CMR \(\forall n\in N\)* thì \(\dfrac{\left(17+12\sqrt{2}\right)^n-\left(17-12\sqrt{2}\right)^n}{4\sqrt{2}}\)
3, Tìm x,y∈Z:\(x^3-y^3=13\left(x^2+y^2\right)\)
Cmr: \(\left(n^2+3n+1\right)^2-1⋮24\forall n\in N\)
\(\left(n^2+3n+1\right)-1=\left(n^2+3n+1-1\right)\left(n^2+3n+1+1\right)\)
\(=\left(n^2+3n\right)\left(n^2+3n+2\right)\)
\(=n\left(n+3\right)\left(n+1\right)\left(n+2\right)\)
\(=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
Bn chứng minh biểu thức trên chia hết cho 3 và 2 nhé!
Sau đó lí luận là (3,2) = 1 và 3.23=24 nên biểu thức chia hết cho 24
P/s: ( Nếu có sai sót mong thông cảm =))
Chứng minh các mệnh đề sau
\(a,n^3+2n⋮3\) \(\forall n\in N\) *
\(b,13^n-1⋮6\forall n\in N\)*
a, Với n = 1 ta có 3 ⋮ 3.
Giả sử n = k ≥ 1 , ta có : k3 + 2k ⋮ 3 ( GT qui nạp).
Ta đi chứng minh : n = k + 1 cũng đúng:
(k+1)^3 + 2(k+1) = k^3 + 3k^2 + 3k + 1 + 2k + 2
= (k^3+2k) + 3(k^2+k+1)
Ta có : + (k^3+2k) ⋮ 3 ( theo gt trên)
+ 3(k^2+k+1) hiển nhiên chia hết cho 3
Vậy mệnh đề luôn chia hết cho 3.
b, Với n = 1 ta có 12 ⋮ 6.
Giả sử n = k ≥ 1 , ta có: 13k -1 ⋮ 6
Ta đi chứng minh : n = k+1 cũng đúng:
=> 13k.13 - 1 = 13(13k - 1) + 12.
Có: - 13(13k - 1) ⋮ 6 ( theo gt)
- 12⋮6 ( hiển nhiên)
> Vậy mệnh đề luôn đúng.
\(\forall n\in N\). CMR:
a) \(A=n^2+3n+18⋮̸49\)
b) \(B=n^2+3n-6⋮̸121\)
chỗ mk ghi chia hết và không chia hết, pn ghi kí hiệu nhé, cùng chia hết thì ghi chữ; pn dùng ngoặc nhọn chỗ do đó và mà nhé.
a) A= n2 + 3n + 18
= n2 + 5n - 2n - 10 + 28
= n(n + 5) - 2(n + 5) + 28
= (n + 5)(n - 2) + 28
Xét (n + 5) và (n - 2)
(n + 5) - (n - 2) = 7 chia hết cho 7
=> (n + 5), (n - 2) cùng chia hết cho 11
Do đó: (n + 5).(n - 2) chia hết cho 7.7= 49
Mà: 28 chia hết cho 7
=> (n + 5)(n - 2) + 28 không chia hết cho 49
b) B = n2 + 3n - 6
= n2 + 7n - 4n - 28 + 22
= n(n + 7) - 4(n + 7) + 22
= (n + 7)(n - 4) + 22
Xét (n + 7) và (n - 4)
(n + 7) - (n - 4)= 11 chia hết cho 11
=> (n + 7) và (n - 4) cùng chia hết cho 11
Do đó: (n + 7).(n - 4) chia hết cho 11.11 = 121
Mà: 22 không chia hết hết cho 121
=> (n + 7)(n - 4) + 22 không chia hết cho 121
chỗ câu a là cùng chia hết cho 7 nhé, mk ghi lộn, xin lỗi
câu a là chia hết nhé, pn sửa kết luận lại giùm mk, xin lỗi
CMR với \(\forall\)n lẻ thì
a, n3 + 3n2 - n - 3 \(⋮\)48
b, n12 - n8 - n4 + 1 \(⋮\)512
Ta có: n^3+3.n^2-n-3=n^2.(n+3) -(n+3)=(n+3).(n-1).(n+1).
-Do n là số lẻ nên đặt n=2k+1.(k thuộc N).
=> n^3+3.n^2-n-3= (2k+4).2k.(2k+2)= 8.k.(k+1).(k+2).
-Do k(k+1) là tích 2 số tự nhiên liên tiếp nên k(k+1) chia hết cho 2 và k(k+1)(k+2) là tích 3 số tự nhiên liên tiếp nên k(k+1)(k+2) chia hết cho 3.
=> 8k(k+1)(k+2) chia hết cho 16 và chia hết cho 3. Mà (16,3)=1.
=> 8k(k+1)(k+2) chia hết cho 16.3.
=> n^3+3.n^2-n-3 chia hết cho 48 với mọi n là số tự nhiên lẻ (đpcm). Bạn phân tích n^12-n^8-n^4+1. =(n-1)^2.(n+1)^2.(n^2+1)^2. (n^4+1).
-Do n lẻ nên trong n-1 và n+1 phải có một số chia hết cho 4, số còn lại chia hết cho 2; n^2+1 chia hết cho 2; n^4+1 chia hết cho 2.
=> (n-1)^2. (n+1)^2 chia hết cho 4^2.4; (n^2+1)^2 chia hết cho 4; n^4+1 chia hết cho 2.
=> (n-1)^2.(n+1)^2.(n^2+1)^2. (n^4+1) chia hết cho 4^2.4.4.2= 512.
Vậy đpcm.
1, a, CMR :Với \(\forall\)n \(\in\)N thì A(n) = n(2n + 7) (7n + 7) chia hết cho 6
b, CMR : An = n(n2 + 1) (n2 + 4)\(⋮\)5 Với \(\forall\)n \(\in\)Z
Cho A= n3 +3n2 + 5n+3.
CMR: A ⋮3 ∀ n ∈ Z+
\(A=n^3+3n^2+5n+3\)
\(=n^2\left(n+1\right)+2n\left(n+1\right)+3\left(n+1\right)\)
\(=\left(n+1\right)\left(n^2+2n+3\right)\)
\(=\left(n+1\right)\left[n\left(n+2\right)+3\right]\)
\(=n\left(n+1\right)\left(n+2\right)+3\left(n+1\right)\)
Do n ; n + 1 ; n + 2 là 3 số nguyên dương liên tiếp
\(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮3\)
\(\Rightarrow...+3\left(n+1\right)⋮3\)
hay \(A⋮3\left(đpcm\right)\)
\(A=n^3+3n^2+6n-\left(n+3\right)+6\)
\(=\left(n^2-1\right)\left(n+3\right)+6n+6\)
\(=\left(n-1\right)\left(n+1\right)\left(n+3\right)+6\left(n+1\right)\)
Có: \(n+3\equiv n\)(mod 3)
mà \(\left(n-1\right)n\left(n+1\right)⋮3\forall n\in Z^+\)
nên \(A⋮3\forall n\in Z^+\)
Chứng minh rằng \(\forall\)n\(\ge\)2( n\(\in\)N) thì
A=cmr 1/2^2+1/3^2+...+1/n^2 <2/3 với n>=2
Cmr: nếu b là số nguyên tố khác 3 thì A=3n+1+2009b là hợp số với n thuộc N, cảm ơn ạ.
B nguyên tố khác 3 nên b=3k+1 hoặc b=3k+2
B=3k+1 thì A =3n+6027k+2010 chia hét cho 3
B=3k+2 thì A=