Tính:
A=\(\tan30^0.\tan31^0.\tan32^0.....\tan54^0.\tan55^0\)
Tính A = tan50.tan550.tan650
\(A=\frac{sin5.sin55.sin65}{cos5.cos55.cos65}=\frac{-\frac{1}{2}\left(cos60-cos50\right)sin65}{\frac{1}{2}\left(cos60+cos50\right)cos65}=\frac{-\frac{1}{2}sin65+cos50.sin65}{\frac{1}{2}cos65+cos50.cos65}\)
\(=\frac{-\frac{1}{2}sin65+\frac{1}{2}sin115+\frac{1}{2}sin15}{\frac{1}{2}cos65+\frac{1}{2}cos115+\frac{1}{2}cos15}=\frac{\frac{1}{2}sin15}{\frac{1}{2}cos15}=tan15\)
\(tan30=\frac{1}{\sqrt{3}}=tan2.15=\frac{2tan15}{1-tan^215}\Rightarrow tan^215+2\sqrt{3}tan15-1=0\)
\(\Rightarrow tan15=2-\sqrt{3}\Rightarrow A=2-\sqrt{3}\)
Hãy xác định dấu của các tích (không dùng bảng số và máy tính)
a) \(\sin110^0\cos130^0\tan30^0\cot320^0\)
b) \(\sin\left(-50^0\right)\tan170^0\cos\left(-91^0\right)\sin530^0\)
a) \(sin110^ocos130^otan30^ocot320^o\)
Ta có \(sin110^o>0;cos130^o< 0;tan30^o>0;cot320^o< 0\) nên
\(sin110^ocos130^otan30^ocot320^o>0\).
b) \(sin\left(-50^o\right)tan170^ocos\left(-91^o\right)sin530^o\)
\(=-sin50^otan170^o.cos91^osin170^o\)
Do \(sin50^o>0;tan170^o< 0;cos91^o< 0,sin170^o>0\)
nên \(=-sin50^otan170^o.cos91^osin170^o< 0\)
hay \(sin\left(-50^o\right)tan170^ocos\left(-91^o\right)sin530^o< 0\).
a) Ta có :
\(\sin110^0>0;\cos130^0< 0;\tan30^0>0;cot320^0< 0\)
do đó tích của chúng dương.
b) \(\sin\left(-50^0\right)< 0;tan170^0< 0;\cos\left(-91^0\right)< 0;\sin530^0>0\)
do đó tích của chúng âm.
Bài 1: Tính
a) A = \(\frac{sin35^0}{cos35^0}.tan55^0+\frac{cos55^0}{sin55^0}.cot35^0\)
b) B = \(tan67^0+cos^216^0-cot23^0+cos^274^0-\frac{cot37^0}{tan53^0}\)
Tính giá trị của các biểu thức:
a) \(\dfrac{-3}{2}\sqrt{9-4\sqrt{5}}+\sqrt{\left(-4\right)^2\left(1+\sqrt{5}\right)^2}\)
b) \(\left(1+\dfrac{1}{tan^225^0}\right)sin^225^0-tan55^0.tan35^0\)
a) Ta có: \(-\dfrac{3}{2}\sqrt{9-4\sqrt{5}}+\sqrt{\left(-4\right)^2\cdot\left(1+\sqrt{5}\right)^2}\)
\(=\dfrac{-3}{2}\left(\sqrt{5}-2\right)+4\cdot\left(\sqrt{5}+1\right)\)
\(=\dfrac{-3}{2}\sqrt{5}+3+4\sqrt{5}+4\)
\(=\dfrac{5}{2}\sqrt{5}+7\)
b) Ta có: \(\left(1+\dfrac{1}{\tan^225^0}\right)\cdot\sin^225^0-\tan55^0\cdot\tan35^0\)
\(=\dfrac{\tan^225^0+1}{\tan^225^0}\cdot\sin25^0-1\)
\(=\left(\dfrac{\sin^225^0}{\cos^225^0}+1\right)\cdot\dfrac{\cos^225^0}{\sin^225^0}\cdot\sin25^0-1\)
\(=\dfrac{\sin^225^0+\cos^225^0}{\cos^225^0}\cdot\dfrac{\cos^225^0}{\sin25^0}-1\)
\(=\dfrac{1}{\sin25^0}-1\)
\(=\dfrac{1-\sin25^0}{\sin25^0}\)
Tính :
\(\frac{\cos60^0}{1+\sin60^0}+\frac{1}{\tan30^0}\)
ta có cos60=1/2
sin 60=\(\frac{\sqrt{3}}{2}\)
tan 30=\(\frac{\sqrt{3}}{3}\)
ta thay vào biểu thức trên
=> \(\frac{\frac{1}{2}}{1+\frac{\sqrt{3}}{2}}+\frac{1}{\frac{\sqrt{3}}{3}}=2\)
\(\frac{cos60^o}{1+sin60^o}+\frac{1}{tan30^o}=\frac{\frac{1}{2}}{1+\frac{\sqrt{3}}{2}}+\frac{1}{\frac{\sqrt{3}}{3}}=\frac{1}{2}.\frac{2}{\sqrt{3}+2}+\sqrt{3}=\frac{1}{\sqrt{3}+2}+\sqrt{3}\)
\(=\frac{2-\sqrt{3}}{4-3}+\sqrt{3}=2-\sqrt{3}+\sqrt{3}=2\)
Hãy tính và so sánh giá trị của từng cặp biểu thức sau đây :
a) \(A=\cos^230^0-\sin^230^0\) và \(B=\cos60^0+\sin45^0\)
b) \(C=\dfrac{2\tan30^0}{1-\tan^230^0}\) và \(D=\left(-\tan135^0\right)\tan60^0\)
a)
\(A=cos^230^o-sin^230^o=\left(\dfrac{\sqrt{3}}{2}\right)^2-\left(\dfrac{1}{2}\right)^2=\dfrac{1}{2}\);
\(B=cos60^o+sin45^o=\dfrac{1}{2}+\dfrac{\sqrt{2}}{2}\).
Vì vậy \(A< B\).
b)
\(C=\dfrac{2tan30^o}{1-tan^230^o}=\dfrac{2\dfrac{\sqrt{3}}{2}}{1-\left(\dfrac{\sqrt{3}}{2}\right)^2}=\sqrt{3}\).
\(D=\left(-tan135^o\right)tan60^o=-\left(-1\right).\sqrt{3}=\sqrt{3}\).
Vậy \(C=D\).
Tính giá trị của biểu thức
A=\(\sin^210^0+\sin^220^0+\sin^230^0+...+\sin^280^0+2013\)
B=\(\cos^21^0+\cos^22^0+...+\cos^289^0\)
C=\(\frac{\sin33^0}{\cos57^0}+\frac{\tan32^0}{\cot58^0}-2\left(\sin20^0.\cos70^0+\cos20^0.\sin70^0\right)\)
D=\(4\cos^2a-6\sin^2a\) biết \(\sin a=\frac{1}{5}\)
a, Tính A = \(\frac{sin^2\text{⍺ }-cos^2\text{⍺ }}{sin\text{⍺ }.cos\text{⍺ }}\) biết tan⍺ = \(\sqrt{3}\)
b, Tính B = cos2550 - cot580 +\(\frac{tan52^0}{cot38^0}\) + cos2350 + tan320
Lời giải:
a)
\(A=\frac{\sin ^2a-\cos ^2a}{\sin a\cos a}=\frac{\sin a}{\cos a}-\frac{\cos a}{\sin a}=\frac{\sin a}{\cos a}-\frac{1}{\frac{\sin a}{\cos a}}=\tan a-\frac{1}{\tan a}\)
\(=\sqrt{3}-\frac{1}{\sqrt{3}}\)
b)
Sử dụng công thức: \(\sin ^2a+\cos ^2a=1; \cos a=\sin (90-a); \tan a=\cot (90-a)\) ta có:
\(B=\cos ^255^0-\cot 58^0+\frac{\tan 52^0}{\cot 38^0}+\cos ^235^0+\tan 32^0\)
\(=\sin ^2(90^0-55^0)-\tan (90^0-58^0)+\frac{\tan 52^0}{\tan (90^0-38^0)}+\cos ^235^0+\tan 32^0\)
\(=(\sin ^235^0+\cos ^235^0)-\tan 32^0+\tan 32^0+\frac{\tan 52^0}{\tan 52^0}\)
\(=1+0+1=2\)
Lời giải:
a)
\(A=\frac{\sin ^2a-\cos ^2a}{\sin a\cos a}=\frac{\sin a}{\cos a}-\frac{\cos a}{\sin a}=\frac{\sin a}{\cos a}-\frac{1}{\frac{\sin a}{\cos a}}=\tan a-\frac{1}{\tan a}\)
\(=\sqrt{3}-\frac{1}{\sqrt{3}}\)
b)
Sử dụng công thức: \(\sin ^2a+\cos ^2a=1; \cos a=\sin (90-a); \tan a=\cot (90-a)\) ta có:
\(B=\cos ^255^0-\cot 58^0+\frac{\tan 52^0}{\cot 38^0}+\cos ^235^0+\tan 32^0\)
\(=\sin ^2(90^0-55^0)-\tan (90^0-58^0)+\frac{\tan 52^0}{\tan (90^0-38^0)}+\cos ^235^0+\tan 32^0\)
\(=(\sin ^235^0+\cos ^235^0)-\tan 32^0+\tan 32^0+\frac{\tan 52^0}{\tan 52^0}\)
\(=1+0+1=2\)
so sánh
a, Tan28o va sin280
b, Cotan420 và cos420
c, cotan730 và sin170
d,tan320 và cos580
CÁC BẠN 2001 VÀO ĐÂY CHÉM GIÓ NÀO
sao ko bảo sớm. mấy khi cậu onl.. chắc 1 năm 1 lần. thấy cậu hay lên olm nên tôi mới bắt đầu lên lại đấy chứ
hơ...tui có sức hút tới v hả, giờ mới biết à, để tối nay chém nha