CMR:\(\dfrac{a+b}{b+c}=\dfrac{c+d}{d+a}\)thì a=c hoặc a+b+c+d =0
Biết \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\) (a,b,c,d \(\ne\) 0). CMR : \(\dfrac{a}{b}=\dfrac{c}{d}\) hoặc \(\dfrac{a}{b}=\dfrac{d}{c}\)
Ta có :
\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\)
\(\Leftrightarrow\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}\)\(\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{ab}{cd}\)
\(\Leftrightarrow\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{ab}{cd}\)
\(\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
\(\Leftrightarrow\dfrac{a}{b}=\dfrac{c}{d}\left(đpcm\right)\)
Cho \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{a.b}{c.d}\) với a;b;c;d khác 0 và c khác +- d
CMR: \(\dfrac{a}{b}=\dfrac{c}{d} \) hoặc \(\dfrac{a}{b}=\dfrac{d}{c}\)
biết:\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\) với a,b,c,d\(\ne\)0. CMR:
\(\dfrac{a}{b}=\dfrac{c}{d}\) hoặc \(\dfrac{a}{b}=\dfrac{d}{c}\)
(a² + b²) / (c² + d²) = ab/cd
<=> (a² + b²)cd = ab(c² + d²)
<=> a²cd + b²cd = abc² + abd²
<=> a²cd - abc² - abd² + b²cd = 0
<=> ac(ad - bc) - bd(ad - bc) = 0
<=> (ac - bd)(ad - bc) = 0
<=> ac - bd = 0 hoặc ad - bc = 0
<=> ac = bd hoặc ad = bc
<=> a/b = d/c hoặc a/b = c/d (đpcm)
a) Cho \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\) CMR: \(\dfrac{5a+3b}{5a-3b}\)=\(\dfrac{5c+3d}{5c-3d}\)
b) CMR: Nếu \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\) thì : \(\dfrac{a}{b}\)=\(\dfrac{3a+2c}{3b+2d}\)
c) CMR: Nếu \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\) thì \(\dfrac{7a^2+3ab}{11a^2-8b^2}\) = \(\dfrac{7c^2+3cd}{11c^{2^{ }}-8d^2}\)
\(\dfrac{a}{b}\) = \(\dfrac{c}{d}\)
\(\dfrac{a}{c}\) = \(\dfrac{b}{d}\)
\(\dfrac{a}{c}\) = \(\dfrac{5a}{5c}\) = \(\dfrac{3b}{3d}\) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{c}\) = \(\dfrac{5a+3b}{5c+3d}\) (1)
\(\dfrac{a}{c}\) = \(\dfrac{5a-3b}{5c-3d}\) (2)
Kết hợp (1) và (2) ta có:
\(\dfrac{5a+3b}{5c+3d}\) = \(\dfrac{5a-3b}{5c-3d}\)
⇒ \(\dfrac{5a+3b}{5a-3b}\) = \(\dfrac{5c+3d}{5c-3d}\) (đpcm)
b; \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\)
\(\dfrac{a}{b}\) = \(\dfrac{3a}{3b}\) = \(\dfrac{2c}{2d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}\) = \(\dfrac{3a+2c}{3b+2d}\) (đpcm)
Cho a,b,c,d>0. CMR :\(1< \dfrac{a}{a+b+c}+\dfrac{b}{b+c+d}+\dfrac{c}{c+d+a}+\dfrac{d}{d+a+b}< 2\)
\(\dfrac{a}{a+b+c}>\dfrac{a}{a+b+c+d}\)
Làm tương tự với 3 phân số còn lại và cộng vế với vế
\(\dfrac{a}{a+b+c}< \dfrac{a+d}{a+b+c+d}\)
Làm tương tự với 3 phân số còn lại và cộng vế với vế
Cho a,b,c,d>0. CMR: 1 <\(\dfrac{a}{a+b+c}\)+\(\dfrac{b}{b+c+d}\)+\(\dfrac{c}{c+d+a}\)+\(\dfrac{d}{d+a+b}\)< 2
Cho \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\) với ( với a, b, c, d khác 0, và c \(\ne\pm d\) ). Chứng minh rằng hoặc \(\dfrac{a}{b}=\dfrac{c}{d}\) hoặc \(\dfrac{a}{b}=\dfrac{d}{c}\) ?
Cho \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\) với ( với a, b, c, d khác 0, và c \(\ne\pm d\) ). Chứng minh rằng hoặc \(\dfrac{a}{b}=\dfrac{c}{d}\) hoặc \(\dfrac{a}{b}=\dfrac{d}{c}\) ?
cho \(a+\dfrac{1}{b}=b+\dfrac{1}{c}=c+\dfrac{1}{d}=d+\dfrac{1}{a}\) CMR: a=b=c=d hoặc /abcd/=1
a, cho \(\dfrac{a}{b}=\dfrac{c}{d}\) (b,d \(\ne\)0) CMR:\(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)
b,cho \(\dfrac{a}{b}=\dfrac{c}{d}\)(b,d \(\ne\)0) CMR:\(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)
a: Đặt a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{k}{k-1}\)
\(\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{k}{k-1}\)
Do đó: \(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)
b: Đặt a/b=c/d=k
=>a=bk; c=dk
\(\left(\dfrac{a+b}{c+d}\right)^2=\left(\dfrac{bk+b}{dk+d}\right)^2=\dfrac{b^2}{d^2}\)
\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2}{d^2}\)
DO đó: \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)