cho a4 + a3 + a2 + a + 1=0
và a+ \(\dfrac{1}{a}\)
tính a + \(\dfrac{1}{a}\)
B1Tìm x,y biết:
\(\dfrac{x}{2}=\dfrac{y}{7}\) và 2x-5y=93
B2Cho 4 số a1, a2, a3. a4 khác 0 và thỏa mãn :
\(a\dfrac{2}{2}=a1\cdot a3\) và \(a\dfrac{2}{3}=a2\cdot a4\)
Chứng minh rằng:\(\dfrac{a\dfrac{3}{1}+a\dfrac{3}{2}+a\dfrac{3}{3}}{a\dfrac{3}{2}+a\dfrac{3}{3}+a\dfrac{3}{4}}=\dfrac{a1}{a4}\)
Bài 1:
Từ \(\dfrac{x}{2}=\dfrac{y}{7}=\dfrac{2x}{4}=\dfrac{5y}{35}\) và 2x-5y=93
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{2}=\dfrac{y}{7}=\dfrac{2x}{4}=\dfrac{5y}{35}=\dfrac{2x-5y}{4-35}=\dfrac{93}{-31}=-3\)
=> x = 2 * (-3) = -6
y = 7 * (-3) = -21
B1. Tìm x, y biết :
\(\dfrac{x}{2}\)=\(\dfrac{y}{7}\) và 2x - 5y = 93
⇒ \(\dfrac{2x}{2}\)=\(\dfrac{5y}{7}\)
Áp dụng tính chất của dãy tỉ số bằng nhau :
\(\dfrac{2x}{2}\)=\(\dfrac{5y}{7}\)=\(\dfrac{2x-5y}{2-7}\)=\(\dfrac{93}{-5}\)
Suy ra :
\(\dfrac{2x}{2}\)=\(\dfrac{93}{-5}\) ⇒ 2x = \(\dfrac{93}{-5}\). 2 = \(\dfrac{186}{-5}\)
⇒ x = \(\dfrac{186}{-5}\): 2
⇒ x = \(\dfrac{93}{-5}\)
⇒ x = -18.6
\(\dfrac{5y}{7}\)=\(\dfrac{93}{-5}\) ⇒ 5y = \(\dfrac{93}{-5}\). 7 = \(\dfrac{651}{-5}\)
⇒ y = \(\dfrac{651}{-5}\): 5
⇒ y = \(\dfrac{651}{-25}\)
⇒ y = -26.04
Vậy : x = -18.6, y = -26.04
CMR nếu \(\dfrac{a1}{a2}=\dfrac{a2}{a3}=\dfrac{a3}{a4}=...=\dfrac{an}{an+1}\) thì:
\(\left(\dfrac{a1+a2+a3+...+an}{a2+a3+a4+...+an+1}\right)^n=\dfrac{a1}{an+1}\)
Lời giải:
Đặt $\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}=...=\frac{a_n}{a_{n+1}}=t$
Áp dụng TCDTSBN:
$t=\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}=...=\frac{a_n}{a_{n+1}}=\frac{a_1+a_2+a_3+....+a_n}{a_2+a_3+....+a_{n+1}}$
$\Rightarrow t^n=\left[\frac{a_1+a_2+a_3+....+a_n}{a_2+a_3+....+a_{n+1}}\right]^n(*)$
Lại có:
$\frac{a_1}{a_2}.\frac{a_2}{a_3}.\frac{a_3}{a_4}....\frac{a_n}{a_{n+1}}=t.t.t....t$
$\Rightarrow \frac{a_1}{a_{n+1}}=t^n(**)$
Từ $(*)$ và $(**)$ ta có:
$\left[\frac{a_1+a_2+a_3+....+a_n}{a_2+a_3+....+a_{n+1}}\right]^n=\frac{a_1}{a_{n+1}}$ (đpcm)
Cho : a1/a2 = a2/a3 = ....= a(n-1)/an = a(n)/a1 và a1 + a2 + .... +a(n) khác 0 ; a1 = -2
Tính a2 ; a3 ; a4 ; .... ; a(n) bằng bao nhiêu ?
cho các số nguyên a1 ; a2 ; a3 ; .... ; a2015 thỏa mãn a1 + a2 + a3 +...+ a 2015 = 0 và a1 + a2 = a3 + a4 = a2015 + a1 =1
tính a1 ; a2015
Có:
a1+a2=a3+a4=...=a2015+a1=1
=>a1+a2+a3+a4+...+a2014+a2015=1007+a2015
Mà 1007+a2015=0
=>a2015=-1007.
=>a1=1--1007
a1=1008.
Chúc học tốt^^
Có:
a1+a2=a3+a4=...=a2015+a1=1
=>a1+a2+a3+a4+...+a2014+a2015=1007+a2015
Mà 1007+a2015=0
=>a2015=-1007.
=>a1=1--1007
a1=1008.
Chúc học tốt^^
Có:
a1+a2=a3+a4=...=a2015+a1=1
=>a1+a2+a3+a4+...+a2014+a2015=1007+a2015
Mà 1007+a2015=0
=>a2015=-1007.
=>a1=1--1007
a1=1008.
Chúc học tốt^^
a) Cho \(\dfrac{a}{b}\)=\(\dfrac{b}{c}\)=\(\dfrac{c}{d}\)
CMR:(\(\dfrac{a+b+c}{b+c+d}\))\(^3\)=\(\dfrac{a}{d}\)
b)Cho \(\dfrac{a1}{a2}\)=\(\dfrac{a2}{a3}\)=\(\dfrac{a3}{a4}\)=...=\(\dfrac{a2008}{a2009}\)
CMR: \(\dfrac{a1}{a2009}\)=(\(\dfrac{a1+a2+a3+...+a2008}{a2+a3+a4+...+a2009}\))\(^{2008}\)
c) Cho \(\dfrac{a}{2003}\)=\(\dfrac{b}{2004}\)=\(\dfrac{c}{2005}\)
CMR: 4(a-b)(b-c)=(c-a)\(^2\)
a: Đặt a/b=b/c=c/d=k
=>a=bk; b=ck; c=dk
=>a=bk; b=dk^2; c=dk
=>a=dk^3; b=dk^2; c=dk
\(\left(\dfrac{a+b+c}{b+c+d}\right)^3=\left(\dfrac{dk^3+dk^2+dk}{dk^2+dk+d}\right)^3=k^3\)
\(\dfrac{a}{d}=\dfrac{dk^3}{d}=k^3\)
=>\(\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{d}\)
c: Đặt a/2003=b/2004=c/2005=k
=>a=2003k; b=2004k; c=2005k
4(a-b)(b-c)=(c-a)^2
=>4(2004k-2003k)(2005k-2004k)=(2005k-2003k)^2
=>4*k*k=(2k)^2(luôn đúng)
=>ĐPCM
Cho 4 số khác 0 là a1,a2,a3,a4 thỏa a1+a2+a3=100 và a2 + a3 +a4 = 50 và \(a2^2\)= a1.a3; \(a3^2\)=a1.a4. Tìm tỉ số \(\dfrac{a1}{a4}\)
cho 2017 số nguyên a a1,a2,a3,..,a2017 có tổng bằng 0 và thỏa mãn a1+a2=a3+a4=a4+a5=..=a2015+a2016=a2017+a1=1 .tìm a1,a2,a2017
TK MÌNH ĐI MỌI NGƯỜI MÌNH BỊ ÂM NÈ!
AI TK MÌNH MÌNH TK LẠI CHO!
cho các số thực ko âm a1,a2,a3.a4,a5 thỏa mãn a1+a2+a3+a4+a5=1
tìm Max A=a1*a2+a2*a3+a3*a4+a4*a5
Ko mất tính tổng quát giả sử \(a_1=\text{max}\left\{a_2;a_3;a_4;a_5\right\}\).
Áp dụng BĐT AM-GM ta có:
\(a_1a_2+a_2a_3+a_3a_4+a_4a_5\le a_1\left(a_2+a_3+a_4+a_5\right)\)
\(\le\frac{\left(a_1+a_2+a_3+a_4+a_5\right)^2}{4}=\frac{1}{4}\)
Xảy ra khi có 2 số bằng \(\frac{1}{2}\) và 3 số còn lại bằng 0
Cho a1/a2=a2/a3=a3/a4=an-1/an=an/a1 ( a1+a2+...+an#0 )
Tính
1) A=a1^2+a2^2+...+an^2/(a1+a2+...+an)^2
2) B=a1^9+a2^9+...+an^9/(a1+a2+...+an)^9
\(a_1+a_2+a_3+a_4+a_5+a_6+a_7=0\left(1\right)\)
\(a_1+a_2=a_3+a_4=a_5+a_6=a_1+a_7=1\left(2\right)\)
Thay (2) vào (1) :
\(1+1+1+a_7=0\)
\(\Rightarrow a_7=-3\)
\(a_1=1-a_7=1--3=4\)
\(a_2=1-a_1=1-4=-3\)
Chúc bạn học tốt !!!