a) Cho \(\dfrac{a}{b}\)=\(\dfrac{b}{c}\)=\(\dfrac{c}{d}\)
CMR:(\(\dfrac{a+b+c}{b+c+d}\))\(^3\)=\(\dfrac{a}{d}\)
b)Cho \(\dfrac{a1}{a2}\)=\(\dfrac{a2}{a3}\)=\(\dfrac{a3}{a4}\)=...=\(\dfrac{a2008}{a2009}\)
CMR: \(\dfrac{a1}{a2009}\)=(\(\dfrac{a1+a2+a3+...+a2008}{a2+a3+a4+...+a2009}\))\(^{2008}\)
c) Cho \(\dfrac{a}{2003}\)=\(\dfrac{b}{2004}\)=\(\dfrac{c}{2005}\)
CMR: 4(a-b)(b-c)=(c-a)\(^2\)
a: Đặt a/b=b/c=c/d=k
=>a=bk; b=ck; c=dk
=>a=bk; b=dk^2; c=dk
=>a=dk^3; b=dk^2; c=dk
\(\left(\dfrac{a+b+c}{b+c+d}\right)^3=\left(\dfrac{dk^3+dk^2+dk}{dk^2+dk+d}\right)^3=k^3\)
\(\dfrac{a}{d}=\dfrac{dk^3}{d}=k^3\)
=>\(\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{d}\)
c: Đặt a/2003=b/2004=c/2005=k
=>a=2003k; b=2004k; c=2005k
4(a-b)(b-c)=(c-a)^2
=>4(2004k-2003k)(2005k-2004k)=(2005k-2003k)^2
=>4*k*k=(2k)^2(luôn đúng)
=>ĐPCM