đưa thừa số ra ngoài dấu căn với b > 0 : \(\sqrt{72a^2b^4}\)
Câu 4: Đưa thừa số ra ngoài dấu căn:
a. \(\sqrt{72a^2b^4}\) với a ≥ 0
b. \(\sqrt{27a^3b^2}\) với a ≥ 0 và b < 0
\(a,=6\left|a\right|b^2\sqrt{2}=6ab^2\sqrt{2}\\ b,=3\left|ab\right|\sqrt{3a}=-3ab\sqrt{3a}\)
đưa thừa số ra ngoài dấu căn
a)\(0,1\sqrt{20000}\)
b)\(-0,05\sqrt{28800}\)
c)\(\sqrt{7.63a^2}\)
d)\(\sqrt{72a^2b^4}v\text{ới}a< 0\)
a/ \(0,1\sqrt{2.10000=0,1\sqrt{ }2.100^{ }2=0,1\cdot100\sqrt{ }2=10\sqrt{ }2}\)
b/ \(-0,05\sqrt{28800}=-0,05\sqrt{288\cdot100=-0,05\cdot10\sqrt{ }288=6\sqrt{ }2}\)
c/\(\sqrt{7\cdot63}a^2=\sqrt{7\cdot9\cdot7}a^2=21a^2\)
\(\sqrt{72a^{ }2b\sqrt{ }4=\sqrt{ }6\cdot9\left|\right|ab^{ }2=-3\sqrt{ }6ab^{ }2}\)
\(\sqrt{72a^{ }2b^{ }4}=\sqrt{6.9}\left|ab^{ }2\right|=3\sqrt{6}-\left(ab^{ }2\right)=-3\sqrt{6}ab^2\)
mk sữa lại câu d
đưa lũy thừa ra ngoài dấu căn
a.\(\sqrt{28a^4b^2}\) với b\(\ge\)0
b.\(\sqrt{72a^2b^4}\) với a<0
a: \(=\sqrt{4\cdot a^4b^2\cdot7}=2a^2b\sqrt{7}\left(b>=0\right)\)
b: \(=\sqrt{36\cdot b^4\cdot a^2\cdot2}=-6ab^2\sqrt{2}\)
B1 . Đưa thừa số ra ngoài dấu căn : a. √5a² ( với a ≤ 0) b. √9b³ ( với b ≤ 0 ) c. √72a²b⁴ ( với a < 0 ) d . √24a⁴b⁸ ( a , b € R ) Giúp mình với ạ
a: \(\sqrt{5a^2}=\left|a\sqrt{5}\right|=-a\sqrt{5}\left(a< =0\right)\)
c: A=\(\sqrt{72a^2b^4}=\sqrt{36a^2b^4\cdot2}=6\sqrt{2}\cdot b^2\cdot\left|a\right|\)
mà a<0
nên \(A=-6\sqrt{2}\cdot ab^2\)
d: \(\sqrt{24a^4b^8}=\sqrt{4a^4b^8\cdot6}=2a^2b^4\cdot\sqrt{6}\)
Đưa thừa số ra ngoài dấu căn :
a) \(4\sqrt{3\:}\) + \(\sqrt{27}\) - \(\sqrt{45}\) + \(\sqrt{5}\)
b) \(\sqrt{28a^4b^{2\:}}\) với b ≥ 0
c) \(\sqrt{72a^2b^4}\) với a < 0
a) = \(4\sqrt{3}+3\sqrt{3}-3\sqrt{5}+\sqrt{5}=\sqrt{3}\cdot\left(4+3\right)-\sqrt{5}\cdot\left(3-1\right)=7\sqrt{3}-2\sqrt{5}\)
b) = \(2a^2b\sqrt{7b}\)
c) = \(6ab^2\sqrt{2}\)
a. \(4\sqrt{3}+\sqrt{27}-\sqrt{45}+\sqrt{5}=4\sqrt{3}+3\sqrt{3}-3\sqrt{5}+\sqrt{5}=\left(4+3\right)\sqrt{3}-\left(3-1\right)\sqrt{5}=7\sqrt{3}-2\sqrt{5}\)b. \(\sqrt{28a^4b^2}=2a^2b\sqrt{7}\)( vì b>=0)
c.\(\sqrt{72a^2b^4}=-6ab^2\sqrt{2}\)( vì a<o)
2. đưa thừa số ra ngoài dấu căn:
a,\(\sqrt{108}\)
b,\(\sqrt{28a^4b^2}\)(b>0)
c,\(\sqrt{72a^2b^4}\)( a<0)
d,\(\sqrt{\frac{39\left(x+y\right)^2}{2}}\)( x>0, y>0 và x≠y)
a) Tìm x để biểu thức \(\sqrt{2x-10}\) có nghĩa
b) Viết biểu thức đưa thừa số ra ngoài dấu căn của biểu thức \(\sqrt{A^2B}\) (với B ≥ 0) Áp dụng tính \(\sqrt{72}\)
c) Thực hiện phép tính :
A = \(\sqrt{16}+\sqrt{81}\)
B = \(\sqrt{\left(15\sqrt{50}+5\sqrt{200}-3\sqrt{450}\right):\sqrt{10}}\)
C = \(\dfrac{3+2\sqrt{3}}{\sqrt{3}}+\dfrac{2+\sqrt{2}}{1+\sqrt{2}}-\left(2+\sqrt{3}\right)\)
a: ĐKXĐ: 2x-10>=0
=>2x>=10
=>x>=5
b: \(\sqrt{A^2B}=\sqrt{A^2}\cdot\sqrt{B}=\left|A\right|\cdot\sqrt{B}\)
\(\sqrt{72}=\sqrt{36\cdot2}=6\sqrt{2}\)
c: \(A=\sqrt{16}+\sqrt{81}=4+9=13\)
\(B=\sqrt{\dfrac{\left(15\sqrt{5}+5\sqrt{200}-3\sqrt{450}\right)}{\sqrt{10}}}\)
\(=\sqrt{\dfrac{15}{\sqrt{2}}+5\sqrt{20}-3\sqrt{45}}\)
\(=\sqrt{\dfrac{15\sqrt{2}+2\sqrt{5}}{2}}=\sqrt{\dfrac{30\sqrt{2}+4\sqrt{5}}{4}}\)
\(=\dfrac{\sqrt{30\sqrt{2}+4\sqrt{5}}}{2}\)
\(C=\dfrac{3+2\sqrt{3}}{\sqrt{3}}+\dfrac{2+\sqrt{2}}{1+\sqrt{2}}-\left(2+\sqrt{3}\right)\)
\(=\dfrac{\sqrt{3}\left(2+\sqrt{3}\right)}{\sqrt{3}}-\left(2+\sqrt{3}\right)+\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}\)
\(=2+\sqrt{3}-2-\sqrt{3}+\sqrt{2}=\sqrt{2}\)
\(\sqrt{48.45}\) Đưa thừa số ra ngoài dấu căn:
\(\sqrt{225.17}\)
\(\sqrt{a^3b^7}với\) \(a\ge0;b\ge0\)
\(\sqrt{x^5\left(x-3\right)^2}\) với \(x>0\)
\(\sqrt{48\cdot45}=12\sqrt{15}\\ \sqrt{225\cdot17}=15\sqrt{17}\\ \sqrt{a^3b^7}=\left|ab^3\right|\sqrt{ab}=ab^3\sqrt{ab}\\ \sqrt{x^5\left(x-3\right)^2}=\left|x^2\left(x-3\right)\right|\sqrt{x}=x^2\left(x-3\right)\sqrt{x}\)
\(\sqrt{48\cdot45}=4\sqrt{3}\cdot3\sqrt{5}=12\sqrt{15}\)
\(\sqrt{225\cdot17}=15\sqrt{17}\)
Đưa thừa số ra ngoài dấu căn
√(28a4b2 ) với b ≥ 0;
√(28a4b2 ) = √((2a2b)2.7) = √7 |2a2b| = 2√7a2b (do b ≥ 0)