Phân tích đa thức thành nhân tử
a^3+3a^2-6a-8
Bài 5. Phân tích các đa thức thành nhân tử
a) (x2-4x)2-8(x2-4x)+15 b) (x2+2x)2+9x2+18x+20
c) ( x+1)(x+2)(x+3)(x+4)-24 d) (x-y+5)2-2(x-y+5)+1
Bài 6. Phân tích các đa thức thành nhân tử
a) x2y+x2-y-1 b) (x2+x)2+4(x2+x)-12
c) (6x+5)2(3x+2)(x+1)-6
Phân tích đa thức thành nhân tử
a. 7-3a (a lớn hơn hoặc =0)
b.\(14x^2-11\)
c.3x-\(6\sqrt{x}\)-6
d.\(x\sqrt{x}-3\sqrt{x}-2\)
Lời giải:
a.
$7-3a=(\sqrt{7}-\sqrt{3a})(\sqrt{7}+\sqrt{3a})$
b.
$14x^2-11=(\sqrt{14}x-\sqrt{11})(\sqrt{14}x+\sqrt{11})$
c.
$3x-6\sqrt{x}-6=3(x-2\sqrt{x}-2)$
$=3[(\sqrt{x}-1)^2-3]$
$=3(\sqrt{x}-1-\sqrt{3})(\sqrt{x}-1+\sqrt{3})$
d.
$x\sqrt{x}-3\sqrt{x}-2=x\sqrt{x}-2x+2x-4\sqrt{x}+\sqrt{x}-2$
$=x(\sqrt{x}-2)+2\sqrt{x}(\sqrt{x}-2)+(\sqrt{x}-2)$
$=(\sqrt{x}-2)(x+2\sqrt{x}+1)$
$=(\sqrt{x}-2)(\sqrt{x}+1)^2$
phân tích đa thức thành nhân tử
a) x4+2x2+1
b) 3ax2+3bx2+ax+bx+5a+5b
c) ax2-bx2-2ax+2bx-3a+3b
d) 10xy2-5by2+2a2x-aby
a) x4+2x2+1=(x2+1)2
b)=3x2(a+b)+x(a+b)+5(a+b)=(a+b)(3x2+x+5)
c)=x2(a-b)-2x(a-b)-3(a-b)=(a-b)(x2-2x-3)=(a-b)(x-3)(x+1)
d)=2x(y2-a2)-5by(y+a)=(y+a)(2xy-2xa-5by)
\(\text{a) x}^4+2x^2+1=\left(x^2+1\right)^2\)
\(\text{b) 3}ax^2+3bx^2+ãx+bx+5a+5b=\left(3ax^2+3bx^2\right) +\left(ax+bx\right)+\left(5a+5b\right)=3x^2+x\left(a+b\right)+5\left(a+b\right)=\left(a+b\right)\left(3x^2+x+5\right)\)
\(\text{c) a}x^2-bx^2-2ax+2bx-3a+3b=\left(\text{a}x^2-bx^2\right)-\left(2ax-2bx\right)-\left(3a-3b\right)=x^2\left(a-b\right)-2x\left(a-b\right)-3\left(a-b\right)=\left(x^2-2x-3\right)\left(a-b\right)\)
a) \(x^4+2x^2+1\)
\(=x^2\left(x^2+1\right)+\left(x^2+1\right)\)
\(=\left(x^2+1\right)^2\)
b) \(3ax^2+3bx^2+ax+bx+5a+5b\)
\(=3x^2\left(a+b\right)+x\left(a+b\right)+5\left(a+b\right)\)
\(=\left(a+b\right)\left(3x^2+x+5\right)\)
c) \(ax^2-bx^2-2ax+2bx-3a+3b\)
\(=x^2\left(a-b\right)-2x\left(a-b\right)-3\left(a-b\right)\)
\(=\left(a-b\right)\left(x^2-2x-3\right)\)
\(=\left(a-b\right)\left(x-3\right)\left(x+1\right)\)
Câu d mình chịu
Phân tích đa thức thành nhân tử
a^3+a-30
x^3+x^2+100
\(a^3+a+30\)
\(=a^3+3a^2-3a^2-9a+10a+30\)
\(=\left(a+3\right)\left(a^2-3a+10\right)\)
\(x^3+x^2+100\)
\(=x^3+5x^2-4x^2-20x+20x+100\)
\(=\left(x+5\right)\left(x^2-4x+20\right)\)
`a^3 + a - 30`
`= a^3 + 3a^2 - 3a^2 - 9a + 10a + 30`
`= (a + 3)(a^2 - 3a + 10)`
`--------------------`
`x^3 + x^2 + 100`
`= x^3 + 5x^2 - 4x^2 - 20x + 20x +100`
`= (x+5)(x^3 - 4x + 20)`
Phân tích đa thức sau thành nhân tửa^3+4a^2+4a+3
\(a^3+4a^2+4a+3\)
\(=a^3+3a^2+a^2+3a+a+3\)
\(=a^2\left(a+3\right)+a\left(a+3\right)+\left(a+3\right)\)
\(=\left(a+3\right)\left(a^2+a+1\right)\)
Phân tích đa thức thành nhân tử
a) 16a^2-4b^3
b) 3x^3 +45
a, 16a2 - 4b3 = 4.(4a2 - b3)
b, 3x3 + 45 = 3.(x3 + 15)
a) \(16a^2-4b^3\)
\(=4\left(4a^2-b^2\right)\)
b) \(3x^3+45\)
\(=3\left(x^3+15\right)\)
Phân tích các đa thức sau thành nhân tử
a) 64x\(^3\) - 27y\(^3\)
b) 27x\(^3\) + \(\dfrac{y^3}{8}\)
c) 125 - (x+1)\(^3\)
a: \(64x^3-27y^3=\left(4x-3y\right)\left(16x^2+12xy+9y^2\right)\)
c: \(125-\left(x+1\right)^3\)
\(=\left(5-x-1\right)\left(25+5x+5+x^2+2x+1\right)\)
\(=\left(4-x\right)\left(x^2+7x+31\right)\)
a) \(64x^3-27y^3=\left(4x\right)^3-\left(3y\right)^3=\left(4x-3y\right)\left(16x^2+12xy+9y^2\right)\)
\(b)\) \(27x^3+\dfrac{y^3}{8}=\left(3x\right)^3+\left(\dfrac{y}{2}\right)^3\)
\(=\left(3x+\dfrac{y}{2}\right)\left(9x^2-\dfrac{3}{2}xy+\dfrac{1}{4}y^2\right)\)
\(c)\) \(125-\left(x+1\right)^3=5^3-\left(x+1\right)^3=\left(5-x-1\right)\left(25+5\left(x+1\right)+\left(x+1\right)^2\right)\)
\(=\left(4-x\right)\left(x^2+7x+31\right)\)
Phân tích đa thức thành nhân tử
a. \(xy+y^2-x-y\) b.\(\left(x^2y^2-8\right)^2-1\) c.\(x^2-7x-8\)
a: \(=y\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(y-1\right)\)
b: \(=\left(x^2y^2-8-1\right)\left(x^2y^2-8+1\right)\)
\(=\left(x^2y^2-9\right)\left(x^2y^2-7\right)\)
\(=\left(xy-3\right)\left(xy+3\right)\left(x^2y^2-7\right)\)
c: \(=x^2-8x+x-8\)
\(=x\left(x-8\right)+\left(x-8\right)\)
\(=\left(x-8\right)\left(x+1\right)\)
\(a,xy+y^2-x-y\)
\(=\left(xy+y^2\right)-\left(x+y\right)\)
\(=y\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(y-1\right)\)
\(---\)
\(b,\left(x^2y^2-8\right)^2-1\)
\(=\left(x^2y^2-8-1\right)\left(x^2y^2-8+1\right)\)
\(=\left[\left(xy\right)^2-9\right]\left(x^2y^2-7\right)\)
\(=\left(xy-3\right)\left(xy+3\right)\left(x^2y^2-7\right)\)
\(---\)
\(c,x^2-7x-8\)
\(=x^2+x-8x-8\)
\(=\left(x^2+x\right)-\left(8x+8\right)\)
\(=x\left(x+1\right)-8\left(x+1\right)\)
\(=\left(x+1\right)\left(x-8\right)\)
\(Toru\)
Phân tích đa thức thành nhân tử
a) 49-x2-y2+2xy
b)(x-3)+2x(3-x)2
a) \(49-x^2-y^2+2xy=49-\left(x^2-2xy+y^2\right)=49-\left(x-y\right)^2=\left(7-x+y\right)\left(7+x-y\right)\)
b) \(\left(x-3\right)+2x\left(3-x\right)^2=\left(x-3\right)+2x\left(x-3\right)^2=\left(x-3\right)\left[1+2x\left(x-3\right)\right]=\left(x-3\right)\left(2x^2-6x+1\right)\)
a) \(49-x^2-y^2+2xy\)
\(=49-\left(x^2-2xy+y^2\right)\)
\(49-\left(x-y\right)^2\)
a)
\(49-x^2-y^2+2xy\\ =49-\left(x^2-2xy+y^2\right)\\ =49-\left(x-y\right)^2\\ =\left(7-x+y\right)\left(7+x-y\right)\)