giải hệ phương trình \(\left\{{}\begin{matrix}x^2-6y^2-xy-2x+11y=3\\x^2+y^2=5\end{matrix}\right.\)
Giải hệ phương trình\(\left\{{}\begin{matrix}x^2+y^2+xy+2x=5y\\\left(x^2+2x\right)\left(x+y-3\right)=-3y\end{matrix}\right.\)
Xét \(y=0\)\(\Rightarrow...\)
Xét \(y\ne0\). Ta có:
\(\left\{{}\begin{matrix}x^2+y^2+xy+2x=5y\\\left(x^2+2x\right)\left(x+y-3\right)=-3y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+2x=5y-y^2-xy\left(1\right)\\\left(x^2+2x\right)\left(x+y-3\right)=-3y\left(2\right)\end{matrix}\right.\)
Thay (1) vào (2), ta có:
\(\left(5y-y^2-xy\right)\left(x+y-3\right)=-3y\)
\(-y\left(x+y-5\right)\left(x+y-3\right)=-3y\)
\(\Leftrightarrow\left(x+y-5\right)\left(x+y-3\right)=3\left(\cdot\right)\)
Đặt \(x+y-5=t\), phương trình \(\left(\cdot\right)\) trở thành
\(t\left(t+2\right)=3\)\(\Leftrightarrow t^2+2t+1=4\Leftrightarrow\left(t+1\right)^2=4\)
\(\Leftrightarrow\left[{}\begin{matrix}t+1=2\\t+1=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}t=1\\t=-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+y-5=1\\x+y-5=-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+y=6\\x+y=2\end{matrix}\right.\)\(\Rightarrow...\)
1) Giaỉ hệ phương trình \(\left\{{}\begin{matrix}x^2-2xy+x-2y+3=0\\y^2-x^2+2xy+2x-2=0\end{matrix}\right.\)
2) Giaỉ hệ phương trình \(\left\{{}\begin{matrix}x^2-6y^2-xy-2x+11y=3\\x^2+y^2=5\end{matrix}\right.\)
3) Chứng minh biểu thức sau không là số tự nhiên S= \(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{100}}\)1/ \(\Leftrightarrow\left\{{}\begin{matrix}2x^2-4xy+2x-4y+6=0\\y^2-x^2+2xy+2x-2=0\end{matrix}\right.\)
\(\Rightarrow x^2+y^2-2xy+4x-4y+4=0\)
\(\Leftrightarrow\left(x-y\right)^2+4\left(x-y\right)+4=0\)
\(\Leftrightarrow\left(x-y+2\right)^2=0\)
\(\Rightarrow y=x+2\)
Thay vào 1 trong 2 pt ban đầu là xong
2/ \(x^2-\left(y+2\right)x-6y^2+11y-3=0\)
\(\Delta=\left(y+2\right)^2-4\left(-6y^2+11y-3\right)\)
\(=25y^2-40y+16=\left(5y-4\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{y+2+5y-4}{2}\\x=\frac{y+2-5y+4}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=3y-1\\x=-2y+3\end{matrix}\right.\)
Thay vào pt 2 là được
c/ \(S=\frac{2}{2\sqrt{1}}+\frac{2}{2\sqrt{2}}+\frac{2}{2\sqrt{3}}+...+\frac{2}{2\sqrt{100}}\)
\(S< 1+\frac{2}{1+\sqrt{2}}+\frac{2}{\sqrt{2}+\sqrt{3}}+...+\frac{2}{\sqrt{99}+\sqrt{100}}\)
\(S< 1+2\left(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}\right)\)
\(S< 1+2\left(\sqrt{100}-1\right)=19\)
\(S>\frac{2}{\sqrt{1}+\sqrt{2}}+\frac{2}{\sqrt{2}+\sqrt{3}}+...+\frac{2}{\sqrt{101}-\sqrt{100}}\)
\(S>2\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{101}-\sqrt{100}\right)\)
\(S>2\left(\sqrt{101}-1\right)>2\left(\sqrt{100}-1\right)=18\)
\(\Rightarrow18< S< 19\Rightarrow S\) nằm giữa 2 số tự nhiên liên tiếp nên S không phải số tự nhiên
Giải các hệ phương trình sau :
a, \(\left\{{}\begin{matrix}x^2+xy=y^2+1\\3x+y=y^2+3\end{matrix}\right.\)
b,\(\left\{{}\begin{matrix}x^2-y^2=4x-2y-3\\x^2+y^2=5\end{matrix}\right.\)
c, \(\left\{{}\begin{matrix}x^2+x-xy-2y^2-2y=0\\x^2+y^2=1\end{matrix}\right.\)
d,\(\left\{{}\begin{matrix}2\left(y+z\right)=yz\\xy+yz+zx=108\\xyz=180\end{matrix}\right.\)
Giải hệ phương trình:
\(\left\{{}\begin{matrix}x^2+\left(y+1\right)^2=xy+x+1\\2x^3=x+y+1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}1=x^2+\left(y+1\right)^2-x\left(y+1\right)\\2x^3=x+y+1\end{matrix}\right.\)
Nhân vế:
\(\Rightarrow2x^3=\left(x+y+1\right)\left[x^2+\left(y+1\right)^2-x\left(y+1\right)\right]\)
\(\Rightarrow2x^3=x^3+\left(y+1\right)^3\)
\(\Rightarrow x^3=\left(y+1\right)^3\)
\(\Rightarrow x=y+1\)
Thế vào pt đầu sẽ được 1 pt bậc 2 một ẩn
Giải hệ phương trình :
\(\left\{{}\begin{matrix}x^2+xy-y^2=5\\\dfrac{y}{x}-\dfrac{2x}{y}=-\dfrac{5}{2}-\dfrac{2}{xy}\end{matrix}\right.\)
ĐKXĐ : \(x;y\ne0\)
Ta có \(\dfrac{y}{x}-\dfrac{2x}{y}=\dfrac{-5}{2}-\dfrac{2}{xy}\)
\(\Leftrightarrow\dfrac{y^2-2x^2}{xy}=\dfrac{-5xy-4}{2xy}\)
\(\Leftrightarrow2y^2-4x^2+5xy=-4\) (1)
Kết hợp \(x^2+xy-y^2=5\) (2)
ta có : \(-5.\left(2y^2-4x^2+5xy\right)=4\left(x^2+xy-y^2\right)\)
\(\Leftrightarrow16x^2-29xy-6y^2=0\)
\(\Leftrightarrow16x^2-32xy+3xy-6y^2=0\)
\(\Leftrightarrow\left(x-2y\right)\left(16x+3y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2y\\x=-\dfrac{3y}{16}\end{matrix}\right.\)
Thay \(x=-\dfrac{3y}{16}\) vào (2) ta được
\(\dfrac{9y^2}{256}-\dfrac{3y^2}{16}-y^2=5\)
\(\Leftrightarrow y^2=-\dfrac{256}{59}\Leftrightarrow y\in\varnothing\) (loại)
Khi x = 2y thay vào (2) ta được
4y2 + 2y2 - y2 = 5
\(\Leftrightarrow y=\pm1\) (tm)
Với y = 1 => x = 2
y = -1 => x = -2
Vậy (x;y) = (2;1) ; (-2;-1)
Giải hệ phương trình
a)\(\left\{{}\begin{matrix}x+y=6\\\\2x-3y=12\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x-y=5\\\left(x-2\right)\left(y+3\right)=3+xy\end{matrix}\right.\)
a) x + y = 6 (1)
2x - 3y = 12 (2)
(1) ⇔ x = 6 - y (3)
Thế (3) vào (2) ta có:
2(6 - y) - 3y = 12
⇔ 12 - 2y - 3y = 12
⇔ -5y = 12 - 12
⇔ -5y = 0
⇔ y = 0
Thế y = 0 vào (3) ta có:
x = 6 - 0
⇔ x = 6
Vậy S = {6; 0}
b) x - y = 5 (4)
(x - 2)(y + 3) = 3 + xy (5)
(5) ⇔ xy + 3x - 2y - 6 = 3 + xy
⇔ 3x - 2y = 3 + 6
⇔ 3x - 2y = 9 (6)
(4) ⇔ x = y + 5 (7)
Thế x = y + 5 vào (6) ta có:
(6) ⇔ 3(y + 5) - 2y = 9
⇔ 3y + 15 - 2y = 9
⇔ y = 9 - 15
⇔ y = -6
Thế y = -6 vào (7) ta có:
x = -6 + 5
⇔ x = -1
Vậy S ={-1; -6}
Cộng vế với vế:
\(x^2+2xy+y^2+x+y=12\)
\(\Leftrightarrow\left(x+y\right)^2+\left(x+y\right)-12=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+y=-4\\x+y=3\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}x+y=-4\\xy=5-\left(x+y\right)=9\end{matrix}\right.\)
Theo Viet đảo, x và y là nghiệm: \(t^2-4t+9=0\) (vô nghiệm)
TH2: \(\left\{{}\begin{matrix}x+y=3\\xy=5-\left(x+y\right)=2\end{matrix}\right.\)
Theo Viet đảo, x và y là nghiệm:
\(t^2-3t+2=0\Rightarrow\left[{}\begin{matrix}t=1\\t=2\end{matrix}\right.\)
\(\Rightarrow\left(x;y\right)=\left(1;2\right);\left(2;1\right)\)
giải các hệ phương trình
a)\(\left\{{}\begin{matrix}x^2+y^2=1\\x^3+y^3=1\end{matrix}\right.\) b) \(\left\{{}\begin{matrix}\dfrac{1}{x}-\dfrac{1}{y}=\dfrac{5}{12}\\x^2+y^2=1\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}x^2-xy+y^2=3\\2x^2-xy+3y^2=12\end{matrix}\right.\)
Giải hệ phương trình:\(\left\{{}\begin{matrix}x^3+xy^2+\left(x^2+y^2-4\right)\left(y+2\right)=0\\x^2+2y^2+xy+2x-4=0\end{matrix}\right.\)