Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tien Tien
Xem chi tiết
Trên con đường thành côn...
30 tháng 7 2021 lúc 18:26

Bạn xem lại đề bài b nhé.

undefined

Nhan Thanh
30 tháng 7 2021 lúc 19:02

a) \(2\left(x^3+y^3\right)-3\left(x^2+y^2\right)\)

\(=2\left[\left(x+y\right)^3-3xy\left(x+y\right)\right]-3\left[\left(x+y\right)^2-2xy\right]\)

\(=2\left(1-3xy\right)-3\left(1-2xy\right)\)

\(=2-6xy-3+6xy=-1\)

\(\Rightarrow\) Giá trị của biểu thức không phụ thuộc vào biến \(x,y\)

b) \(\dfrac{\left(x+5\right)^2+\left(x-5\right)^2}{x^2+25}\)

 \(=\dfrac{x^2+10x+25+x^2-10x+25}{x^2+25}\)

\(=\dfrac{2x^2+50}{x^2+25}=\dfrac{2\left(x^2+25\right)}{x^2+25}=2\)

\(\Rightarrow\) Giá trị của biểu thức không phụ thuộc vào biến \(x\)

 

Nguyễn Lê Phước Thịnh
30 tháng 7 2021 lúc 23:58

a) Ta có: \(2\left(x^3+y^3\right)-3\left(x^2+y^2\right)\)

\(=2\left(x+y\right)^3-6xy\left(x+y\right)-3\left(x+y\right)^2+6xy\)

\(=\left(x+y\right)^2\left[2\left(x+y\right)-3\right]-6xy\left(x+y-1\right)\)

\(=2\cdot1-3-6xy\left(1-1\right)\)

=-1

b) Ta có: \(\dfrac{\left(x+5\right)^2+\left(x-5\right)^2}{x^2+25}\)

\(=\dfrac{x^2+10x+25+x^2-10x+25}{x^2+25}\)

=2

Trần Linh Trang
Xem chi tiết
ỵyjfdfj
Xem chi tiết
Hquynh
2 tháng 1 2023 lúc 9:05

\(p=\left(x-2\right)\left(x+3\right)+\left(x+1\right)^2-2x^2-3x\\ =x^2-2x+3x-6+x^2+2x+1-2x^2-3x\\ =\left(x^2+x^2-2x^2\right)+\left(-2x+2x\right)+\left(3x-3x\right)+\left(-6+1\right)\\ =-5\)

Vậy biểu thức không phụ thuộc vào biến 

Nữ hoàng sến súa là ta
Xem chi tiết
Trần Thanh Phương
3 tháng 1 2019 lúc 17:01

a) Phân thức B xác định \(\Leftrightarrow\hept{\begin{cases}2x-2\ne0\\x^2-1\ne0\\2x+2\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne\left\{\pm1\right\}\\x\ne-1\end{cases}\Leftrightarrow}x\ne\left\{\pm1\right\}}\)

b) \(B=\left(\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right)\cdot\frac{4x^2-4}{5}\)

\(B=\left[\frac{\left(x+1\right)^2}{2\left(x-1\right)\left(x+1\right)}+\frac{3\cdot2}{2\left(x-1\right)\left(x+1\right)}-\frac{\left(x+3\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}\right]\cdot\frac{\left(2x\right)^2-2^2}{5}\)

\(B=\frac{x^2+2x+1+6-x^2-2x+3}{2\left(x-1\right)\left(x+1\right)}\cdot\frac{\left(2x-2\right)\left(2x+2\right)}{5}\)

\(B=\frac{10\cdot2\left(x-1\right)\cdot2\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)\cdot5}\)

\(B=\frac{40\left(x-1\right)\left(x+1\right)}{10\left(x-1\right)\left(x+1\right)}\)

\(B=4\)

Vậy với mọi giá trị của x thì B luôn bằng 4

Vậy giá trị của B không phụ thuộc vào biến ( đpcm )

shitbo
3 tháng 1 2019 lúc 17:07

\(Giải:\)

\(ĐKXĐ:x\ne\pm1\)
\(B=\left[\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right]=\left[\frac{x+1}{2x-2}+\frac{12}{4x^2-4}-\frac{x+3}{2x+2}\right]\)

\(=\left[\frac{x+1}{2x-2}+\frac{12}{\left(2x+2\right)\left(2x-2\right)}-\frac{x+3}{2x+2}\right]\)

\(=\left[\frac{\left(x+1\right)\left(2x+2\right)}{\left(2x+2\right)\left(2x-2\right)}+\frac{12}{\left(2x+2\right)\left(2x-2\right)}-\frac{\left(x+3\right)\left(2x-2\right)}{\left(2x-2\right)\left(2x+2\right)}\right]\)

\(=\frac{2x^2+4x+14-2x^2+2x-6x+6}{\left(2x-2\right)\left(2x+2\right)}\)

\(=\frac{6}{\left(2x-2\right)\left(2x+2\right)}\)

Dương Lam Hàng
3 tháng 1 2019 lúc 17:08

a) Biểu thức B xác định

Khi và chỉ khi \(x\ne\pm1\)

b) \(B=\left[\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right].\frac{4x^2-4}{5}\)

         \(=\left[\frac{x+1}{2\left(x-1\right)}+\frac{3}{\left(x-1\right)\left(x+1\right)}-\frac{x+3}{2\left(x+1\right)}\right].\frac{4\left(x^2-1\right)}{5}\)

        \(=\left[\frac{\left(x+1\right)^2+3.2-\left(x+3\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}\right].\frac{4\left(x-1\right)\left(x+1\right)}{5}\)

          \(=\left[\frac{x^2+2x+1+6-\left(x^2-x+3x-3\right)}{2\left(x-1\right)\left(x+1\right)}\right].\frac{4\left(x-1\right)\left(x+1\right)}{5}\)

           \(=\left[\frac{x^2+2x+1+6-x^2+x-3x+3}{2\left(x+1\right)\left(x-1\right)}\right].\frac{4\left(x+1\right)\left(x-1\right)}{5}\)

          \(=\frac{10}{2\left(x+1\right)\left(x-1\right)}.\frac{4\left(x-1\right)\left(x+1\right)}{5}\)

           \(=\frac{10.4.\left(x-1\right)\left(x+1\right)}{2.5.\left(x-1\right)\left(x+1\right)}=4\)

Vậy giá trị của biểu thức không phụ thuộc vào biến x

Sách Giáo Khoa
Xem chi tiết
Nguyễn Thu Hà
26 tháng 4 2017 lúc 21:20

a, \(x\left(5x-3\right)-x^2\left(x-1\right)+x\left(x^2-6x\right)-10+3x\)

\(=5x^2-3x-x^3+x^2+x^3-6x^2-10+3x\)

=\(\left(5x^2+x^2-6x^2\right)+\left(3x-3x\right)+\left(x^3-x^3\right)-10\)

=-10

Vậy giá trị của biểu thức trên không phụ thuộc vào biến x.

b, \(x\left(x^2+x+1\right)-x^2\left(x+1\right)-x+5\)

=\(x^3+x^2+x-x^3-x^2-x+5\)

=\(\left(x^3-x^3\right)+\left(x^2-x^2\right)+\left(x-x\right)+5\)

= 5

Vậy biểu thức trên không phụ thuộc vào biến x .

Cutegirl
9 tháng 10 2017 lúc 20:47

a, x(5x - 3 ) - x2 ( x - 1 ) + x(x2 - 6x ) - 10 + 3x

= 5x2 - 3x - x3 + x2 + x3 - 6x2 - 10 + 3x

= ( 5x2 + x2 - 6x2 ) + ( -3x + 3x ) + ( -x3 + x3 ) - 10

= -10

Vậy giá trị biểu thức a không phụ thuộc vào phần biến

Luu Phan Hai Dang
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
3 tháng 10 2020 lúc 20:29

( x - 1 )3 - ( x - 1 )( x2 + x + 1 ) - 3( 1 - x )x < đã sửa đề >

= x3 - 3x2 + 3x - 1 - ( x3 - 1 ) + 3x2 - 3x

= x3 - 1 - x3 + 1

= 0 ( đpcm )

Khách vãng lai đã xóa
ngọc hân
Xem chi tiết
missing you =
18 tháng 7 2021 lúc 13:27

\(\dfrac{\left(2x+5\right)^2+\left(5x-2\right)^2}{x^2+1}=\dfrac{4x^2+20x+25+25x^2-20x+4}{x^2+1}\)

\(=\dfrac{29x^2+29}{x^2+1}=\dfrac{29\left(x^2+1\right)}{x^2+1}=29\)

Vậy.....

Nguyễn Lê Phước Thịnh
19 tháng 7 2021 lúc 0:09

Ta có: \(\dfrac{\left(2x+5\right)^2+\left(5x-2\right)^2}{x^2+1}\)

\(=\dfrac{4x^2+20x+25+25x^2-20x+4}{x^2+1}\)

\(=\dfrac{29x^2+29}{x^2+1}=29\)

Sách Giáo Khoa
Xem chi tiết
Lê Thiên Anh
19 tháng 4 2017 lúc 22:04

(x - 5)(2x + 3) - 2x(x - 3) + x + 7

= 2x2 + 3x – 10x – 15 – 2x2 + 6x + x + 7

= 2x2 – 2x2 – 7x + 7x – 15 + 7 = -8

Vậy sau khi rút gọn biểu thức ta được hằng số -8 nên giá trị biểu thức không phụ thuộc vào giá trị của biến


Ngáo Nu
19 tháng 4 2017 lúc 22:38

(x - 5)(2x + 3) - 2x(x - 3) + x + 7

= 2x2 + 3x – 10x – 15 – 2x2 + 6x + x + 7

= 2x2 – 2x2 – 7x + 7x – 15 + 7 = -8

Vậy sau khi rút gọn biểu thức ta được hằng số -8 nên giá trị biểu thức không phụ thuộc vào giá trị của biến.



Hạnh Tâm Nguyễn
22 tháng 5 2017 lúc 9:04

(x-5)(2x+3)-2x(x-3)+x+7

= 2x2+3x-10x-15-2x2+6x+x+7

= (2x2-2x2)+(6x+x+3x-10x)-(15-7)

= 0+0-8

= -8

vậy giá trị của biểu thức (x-5)(2x+3)-2x(x-3)+x+7 không phụ thuộc vào giá trị của biến

Minh tú Trần
Xem chi tiết
Nguyễn Minh Đăng
27 tháng 7 2020 lúc 10:42

Bài làm:

a) \(3x\left(x+5\right)-\left(3x+18\right)\left(x-1\right)\)

\(=3x^2+15x-3x^2+3x-18x+18\)

\(=18\)=> không phụ thuộc GT biến

b) \(2x\left(x+3\right)-\left(x-5\right)\left(7+2x\right)\)

\(=2x^2+6x-7x-2x^2+35+10x\)

\(=9x+35\)=> có phụ thuộc GT biến

c) \(5x\left(x^2-7x+2\right)-x^2\left(5x-8\right)+27x^2-10x\)

\(=5x^3-35x^2+10x-5x^3+8x^2+27x^2-10x\)

\(=0\)=> không phụ thuộc GT biến

Khách vãng lai đã xóa
Trần Nguyễn Thái
27 tháng 7 2020 lúc 10:49

cho mk hỏi tại sao chỗ (3x+18)(x-1) bạn lại ra được 3x2+3x -18x+18 

Khách vãng lai đã xóa
FL.Han_
27 tháng 7 2020 lúc 10:52

\(a,3x\left(x+5\right)-\left(3x+18\right)\left(x-1\right)\)

\(=3x^2+15x-3x^2-3x+18x-18\)

\(=30x+18\)

\(b,2x\left(x+3\right)-\left(x-5\right)\left(7+2x\right)\)

\(=2x^2+6x-7x+2x^2-35+10x\)

\(=4x^2+9x-35\)

\(c,5x\left(x^2-7x+2\right)-x^2\left(5x-8\right)+27x^2-10x\)

\(=5x^3-35x^2+10x-5x^3-8x^2+27x^2-10x\)

\(=-8x^2\)

Khách vãng lai đã xóa