Tìm x thỏa mãn đẳng thức:
4(x^2+x+1)^3 = 27x^2(x+1)^2 + (x-1)^2.(2+x).(2x+1)^2
Rút gọn biểu thực rồi tính : sử dụng các hằng đẳng thức
b) M = (x + 3) ^ 2 + (x - 3)(x - 3) - 2(x + 2)(x - 4) khi 2 thỏa mãn với 2x + 1 = 0
2) V = (3x + 4) ^ 2 - (x + 4)(x - 4) - 10x. khi 2 thỏa mãn với 10x + 1 = 0 .
3) P = (x + 1) ^ 2 - (2x - 1) ^ 2 + 3(x - 2)(x + 2) với x = 1
4) Q = (x - 3)(x + 3) + (x - 2) ^ 2 - 2x(x - 4) với x = - 1 .
Lời giải:
1.
$M=(x^2+6x+9)+(x^2-9)-2(x^2-2x-8)$
$=x^2+6x+9+x^2-9-2x^2+4x+16=(x^2+x^2-2x^2)+(6x+4x)+(9-9+16)$
$=10x+16=5(2x+1)+11=5.0+11=11$
2.
$V=(9x^2+24x+16)-(x^2-16)-10x=9x^2+24x+16-x^2+16-10x$
$=(9x^2-x^2)+(24x-10x)+(16+16)=8x^2+14x+32$
$=8(\frac{-1}{10})^2+14.\frac{-1}{10}+32=\frac{767}{25}$
3.
$P=(x^2+2x+1)-(4x^2-4x+1)+3(x^2-4)$
$=x^2+2x+1-4x^2+4x-1+3x^2-12$
$=(x^2-4x^2+3x^2)+(2x+4x)+(1-1-12)$
$=6x-12=6.1-12=-6$
4.
$Q=(x^2-9)+(x^2-4x+4)-2x^2+8x$
$=x^2-9+x^2-4x+4-2x^2+8x$
$=(x^2+x^2-2x^2)+(-4x+8x)-9+4$
$=4x-5=4(-1)-5=-9$
Tìm đa thức B thỏa mãn đẳng thức:\(\dfrac{x^2-1}{\left(x^2-2x+1\right)}=\dfrac{x+1}{\left(x^2-x-6\right)B}\)
\(\Leftrightarrow\dfrac{x+1}{\left(x-3\right)\left(x+2\right)\cdot B}=\dfrac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)^2}\)
\(\Leftrightarrow B=\dfrac{x-1}{\left(x-3\right)\left(x+2\right)}\)
Tìm 1 cặp đa thức A và B thỏa mãn đẳng thức sau: ( x + 2 ) A x 2 - 1 = ( x - 2 ) B x 2 + 2 x + 1
Hai chữ số tận cùng của 51^51
2. Trung bình cộng của các giá trị của x thỏa mãn: (x - 2)^8 = (x - 2)^6
3. Số x âm thỏa mãn: 5^(x - 2).(x + 3) = 1
4. Số nguyên tố x thỏa mãn: (x - 7)^x+1 - (x - 7)^x+11 = 0
5. Tổng 3 số x,y,y biết: 2x = y; 3y = 2z và 4x - 3y + 2z = 36
6. Tập hợp các số hữu tỉ x thỏa mãn đẳng thức: x^2 - 25.x^4 = 0
7. Giá trị của x trong tỉ lệ thức: 3x+2/5x+7 = 3x-1/5x+1
8. Giá trị của x thỏa mãn: (3x - 2)^5 = -243
9. Tổng của 2 số x,y thỏa mãn: !x-2007! = !y-2008! < hoặc = 0
10. số hữu tỉ dương và âm x thỏa mãn: (2x - 3)^2 = 16
11. Tập hợp các giá trị của x thỏa mãn đẳng thức: x^6 = 9.x^4
12. Số hữu tỉ x thỏa mãn: |x|. |x^2+3/4| = X
có khùng hk vậy hùng tự đăng tự giải ls
1) Quy luật cứ mũ chẵn 2 số tận cùng là 01 còn mũ lẻ thì 2 số tận cùng là 51
Vậy 2 số tận cùng của 51^51 là 51
2)pt<=> x-2=0 hoặc (x-2)^2=1 <=> x=2 hoặc x=1 hoặc x=3
Vậy trung bìng cộng là 2
4)Pt<=> (x-7)^(x+1)=0 hoặc 1-(x-7)^10=0=> x=7 hoặc x=8 hoặc x=6
Do x là số nguyên tố => x=7 TM
5)3y=2z=> 2z-3y=0
4x-3y+2z=36=> 4x=36=> x=9
=> y=2.9=18=> z=3.18/2=27
=> x+y+z=9+18+27=54
6)pt<=> x^2=0 hoặc x^2=25 <=> x=0 hoặc x=-5 hoặc x=5
7)pt<=> (3x+2)(5x+1)=(3x-1)(5x+7)
Nhân ra kết quả cuối cùng là x=3
8)ta có (3x-2)^5=-243=-3^5
=> 3x-2=-3 => x=-1/3
9)Câu này chưa rõ ý bạn muốn hỏi!
10)2x-3=4 hoặc 2x-3=-4
<=> x=7/2 hoặc x=-1/2
11)x^4=0 hoặc x^2=9
=> x=0 hoặc x=-3 hoặc x=3
Bài 1:
\(\left(x-2\right)\left(2x+5\right)-2x^2-1=0\)
\(\Leftrightarrow2x^2+x-10-2x^2-1=0\)
\(\Leftrightarrow x-11=0\Leftrightarrow x=11\)
Bài 2:
\(P=\left|2-x\right|+2y^4+5\)
Ta thấy:
\(\begin{cases}\left|2-x\right|\ge0\\2y^4\ge0\end{cases}\)
\(\Rightarrow\left|2-x\right|+2y^4\ge0\)
\(\Rightarrow\left|2-x\right|+2y^4+5\ge5\)
\(\Rightarrow P\ge5\)
Dấu = khi \(\begin{cases}\left|2-x\right|=0\\2y^4=0\end{cases}\)\(\Leftrightarrow\)\(\begin{cases}x=2\\y=0\end{cases}\)
Vậy MinP=5 khi \(\begin{cases}x=2\\y=0\end{cases}\)
Bài 4:
2(2x+x2)-x2(x+2)+(x3-4x+13)
=2x2+4x-x3-2x2+x3-4x+13
=(2x2-2x2)+(4x-4x)-(-x3+x3)+13
=13
Có tìm được x thỏa mãn đẳng thức sau không ?
2|x+3|+3|x+2|+4|x+1|+5=x
\(VT=2\left|x+3\right|+3\left|x+2\right|+4\left|x+1\right|+5\ge5\) với mọi x
=> VP = \(x\ge5\)
Với \(x\ge5\) ta có: 2(x + 3) + 3(x + 2) + 4(x + 1) + 5 = x
=> 2x + 6 + 3x + 6 + 4x + 4 + 5 = x
=> 9x + 21 = x
=> 9x - x = -21
=> 8x = -21
=> x < 0, không thỏa mãn đk \(x\ge5\)
Vậy không tìm được x thỏa mãn đăng thức như đề bài
Ta có:
\(2\left|x+3\right|+3\left|x+2\right|+4\left|x+1\right|+5=x\)
Ta thấy: \(VT>0\)
Vậy \(x>0\)
Bỏ GTTĐ ta có :
\(8x=-21\)
Vậy x âm (Vô lý)
Không có giá trị của x thỏa mãn.
Bài 1:Tìm giá trị của x để thõa mãn các đẳng thức sau:
a,2x(x-1)-x^2+6=0
b,x^4-2x^2(3+2x^2)+3x^2(x^2+1)=-3
c,(x+1)(x^2-x+1)-2x=x(x-2)(x+2)
d,(x+3)(x^2-3x+9)-x(x-2)(x+2)=15
giúp mk vs mk cần gấp
a) \(2x^2-2x-x^2+6=0\)
\(\Leftrightarrow x^2-2x+1+5=0\)
\(\Leftrightarrow\left(x-1\right)^2=-5\) ( vô lý)
Vậy không có x thoả mãn \(2x.\left(x-1\right)-x^2+6=0\)
b) \(x^4-2x^2.\left(3+2x^2\right)+3x^2.\left(x^2+1\right)=-3\)
\(\Leftrightarrow x^4-6x^2-4x^4+3x^4+3x^2+3=0\)
\(\Leftrightarrow3-3x^2=0\)
\(\Leftrightarrow3x^2=3\Leftrightarrow x^2=1\) \(\Leftrightarrow x\in\left\{-1;1\right\}\)
Vậy \(x\in\left\{-1;1\right\}\)
c) \(\left(x+1\right).\left(x^2-x+1\right)-2x=x.\left(x-2\right).\left(x+2\right)\)
\(\Leftrightarrow x^3+1-2x-x.\left(x^2-4\right)=0\)
\(\Leftrightarrow x^3+1-2x-x^3+4x=0\)
\(\Leftrightarrow1+2x=0\Leftrightarrow x=\dfrac{-1}{2}\)
Vậy x=\(\dfrac{-1}{2}\)
d) \(\left(x+3\right).\left(x^2-3x+9\right)-x.\left(x-2\right).\left(x+2\right)=15\)
\(\Leftrightarrow x^3+27-x.\left(x^2-4\right)-15=0\)
\(\Leftrightarrow x^3-27-x^3+4x-15=0\)
\(\Leftrightarrow4x-42=0\)
\(\Leftrightarrow x=10,5\)
Vậy x=10,5
Tìm đa thức N thỏa mãn mỗi đẳng thức sau:
a) x + 1 N = x 2 − 2 x + 4 x 3 + 8 với x ≠ − 1 và x ≠ − 2
b) ( x − 3 ) N 3 + x = 2 x 3 − 8 x 2 − 6 x + 36 2 + x với x ≠ ± 3 và x ≠ − 2 .
a) Kết quả N = (x + 1)(x + 2);
b) Kết quả N = 2(x + 3)(x - 3).
1) Giải phương trình:
\(4\log_2^2x+x\log_2\left(x+2\right)=2\log_2x\left[x+\log_2\left(x+2\right)\right]\)
2) Tìm tất cả bộ hai số thực \(\left(x;y\right)\) thỏa mãn đẳng thức:
\(x^{\log_2x}+4^y+\left(x-5\right)2^{y+1}+57=18x\)