Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
HoàngIsChill
Xem chi tiết
Nguyễn Huy Tú
19 tháng 7 2021 lúc 10:06

1, \(\dfrac{1}{3-2\sqrt{2}}-\dfrac{1}{3+2\sqrt{2}}=\dfrac{3+2\sqrt{2}}{9-8}-\dfrac{3-2\sqrt{2}}{9-8}\)

\(=3+2\sqrt{2}-3+2\sqrt{2}=4\sqrt{2}\)

2, \(\dfrac{1}{\sqrt{2}-\sqrt{3}}-\dfrac{3}{\sqrt{18}+2\sqrt{3}}=\dfrac{1}{\sqrt{2}-\sqrt{3}}-\dfrac{3}{\sqrt{18}+\sqrt{12}}\)

\(=\dfrac{1}{\sqrt{2}-\sqrt{3}}-\dfrac{3}{\sqrt{6}\left(\sqrt{2}+\sqrt{3}\right)}=\dfrac{\sqrt{6}\left(\sqrt{2}+\sqrt{3}\right)}{\sqrt{6}.\left(-1\right)}-\dfrac{3\left(\sqrt{2}-\sqrt{3}\right)}{\sqrt{6}.\left(-1\right)}\)

\(=\dfrac{2\sqrt{3}+3\sqrt{2}-3\sqrt{2}+3\sqrt{3}}{-\sqrt{6}}=\dfrac{5\sqrt{3}}{-\sqrt{6}}=-5\sqrt{18}=-15\sqrt{2}\)

3, \(\dfrac{2}{\sqrt{5}-2}+\dfrac{-2}{\sqrt{5}+2}=\dfrac{2\left(\sqrt{5}+2\right)}{1}-\dfrac{2\left(\sqrt{5}-2\right)}{1}\)

\(=2\sqrt{5}+4-2\sqrt{5}+4=8\)

tương tự 

Nguyễn Lê Phước Thịnh
19 tháng 7 2021 lúc 12:09

\(\dfrac{1}{3-2\sqrt{2}}-\dfrac{1}{3+2\sqrt{2}}=3+2\sqrt{2}-3+2\sqrt{2}=4\sqrt{2}\)

Nguyễn Văn Tín Nghĩa
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 2 2021 lúc 22:12

Sửa đề: \(\dfrac{8\sqrt{x}-x-31}{x-8\sqrt{x}+15}-\dfrac{\sqrt{x}+5}{\sqrt{x}-3}-\dfrac{3\sqrt{x}-1}{5-\sqrt{x}}\)

Ta có: \(\dfrac{8\sqrt{x}-x-31}{x-8\sqrt{x}+15}-\dfrac{\sqrt{x}+5}{\sqrt{x}-3}-\dfrac{3\sqrt{x}-1}{5-\sqrt{x}}\)

\(=\dfrac{-x+8\sqrt{x}-31}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-5\right)}-\dfrac{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-5\right)}+\dfrac{\left(3\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-5\right)}\)

\(=\dfrac{-x+8\sqrt{x}-31-\left(x-25\right)+3x-9\sqrt{x}-\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-5\right)}\)

\(=\dfrac{2x-2\sqrt{x}-28-x+25}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-5\right)}\)

\(=\dfrac{x-2\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-5\right)}\)

\(=\dfrac{x-3\sqrt{x}+\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-5\right)}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)+\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-5\right)}\)

\(=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-5\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-5}\)

Thảo Vy
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 8 2021 lúc 22:23

Ta có: \(\dfrac{3+\sqrt{5}}{\sqrt{2}+\sqrt{3+\sqrt{5}}}-\dfrac{3-\sqrt{5}}{\sqrt{2}-\sqrt{3-\sqrt{5}}}\)

\(=\dfrac{6+2\sqrt{5}}{2\sqrt{2}+\sqrt{2}\cdot\left(\sqrt{5}+1\right)}-\dfrac{6-2\sqrt{5}}{2\sqrt{2}-\sqrt{2}\left(\sqrt{5}-1\right)}\)

\(=\dfrac{6+2\sqrt{5}}{2\sqrt{2}+\sqrt{10}+\sqrt{2}}-\dfrac{6-2\sqrt{5}}{2\sqrt{2}-\sqrt{10}+\sqrt{2}}\)

\(=\dfrac{6+2\sqrt{5}}{3\sqrt{2}+\sqrt{10}}-\dfrac{6-2\sqrt{5}}{3\sqrt{2}-\sqrt{10}}\)

\(=\dfrac{\left(6+2\sqrt{5}\right)\left(3\sqrt{2}-\sqrt{10}\right)-\left(6-2\sqrt{5}\right)\left(3\sqrt{2}+\sqrt{10}\right)}{8}\)

\(=\dfrac{18\sqrt{2}-6\sqrt{10}+6\sqrt{10}-10\sqrt{2}-18\sqrt{2}-6\sqrt{10}+6\sqrt{10}+10\sqrt{2}}{8}\)

\(=0\)

HoàngIsChill
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 7 2021 lúc 15:14

1) \(\dfrac{\sqrt{5}+2}{\sqrt{5}-2}=9+4\sqrt{5}\)

2) \(\dfrac{5\sqrt{2}-2\sqrt{5}}{\sqrt{2}-\sqrt{5}}=\dfrac{\sqrt{10}\left(\sqrt{5}-\sqrt{2}\right)}{-\left(\sqrt{5}-\sqrt{2}\right)}=-\sqrt{10}\)

3) \(\dfrac{\sqrt{20}-3\sqrt{10}}{3-\sqrt{5}}=\dfrac{\sqrt{10}\left(\sqrt{5}-3\right)}{-\left(\sqrt{5}-3\right)}=-\sqrt{10}\)

4) \(\dfrac{6-2\sqrt{5}}{3+\sqrt{5}}=\dfrac{\left(6-2\sqrt{5}\right)\left(3-\sqrt{5}\right)}{4}=\dfrac{18-6\sqrt{5}-6\sqrt{5}+10}{4}=\dfrac{28-12\sqrt{5}}{4}=7-3\sqrt{5}\)

5)\(\dfrac{9+4\sqrt{5}}{\sqrt{5}+2}=\sqrt{5}+2\)

Quỳnh 9/2 Mai
Xem chi tiết
linh phạm
21 tháng 12 2021 lúc 20:38

1)\(=\left|\sqrt{3}-3\right|+\sqrt{\left(\sqrt{3}-1\right)^2}=3-\sqrt{3}+\left|\sqrt{3}-1\right|=3-\sqrt{3}+\sqrt{3}-1=2\)

Nguyễn Lê Phước Thịnh
21 tháng 12 2021 lúc 20:39

2: \(=\sqrt{5}+2-\sqrt{5}=2\)

ngoc tranbao
Xem chi tiết
Akai Haruma
3 tháng 8 2021 lúc 18:33

a. ĐKXĐ: $x\geq 0$

PT $\Leftrightarrow -5x-5\sqrt{x}+12\sqrt{x}+12=0$

$\Leftrightarrow -5\sqrt{x}(\sqrt{x}+1)+12(\sqrt{x}+1)=0$

$\Leftrightarrow (\sqrt{x}+1)(12-5\sqrt{x})=0$

Dễ thấy $\sqrt{x}+1>1$ với mọi $x\geq 0$ nên $12-5\sqrt{x}=0$

$\Leftrightarrow \sqrt{x}=\frac{12}{5}$

$\Leftrightarrow x=5,76$ (thỏa mãn)

 

Akai Haruma
3 tháng 8 2021 lúc 18:37

d. ĐKXĐ: $x\geq 2$

PT $\Leftrightarrow \sqrt{49}.\sqrt{x-2}-14\sqrt{\frac{1}{49}}\sqrt{x-2}=3\sqrt{x-2}+8$

$\Leftrightarrow 7\sqrt{x-2}-2\sqrt{x-2}=3\sqrt{x-2}+8$

$\Leftrightarrow 2\sqrt{x-2}=8$

$\Leftrightarrow \sqrt{x-2}=4$

$\Leftrightarrow x=4^2+2=18$ (tm)

 

Akai Haruma
3 tháng 8 2021 lúc 18:38

b. ĐKXĐ: $x^2\geq 5$

PT $\Leftrightarrow \frac{1}{3}\sqrt{4}.\sqrt{x^2-5}+2\sqrt{\frac{1}{9}}\sqrt{x^2-5}-3\sqrt{x^2-5}=0$

$\Leftrightarrow \frac{2}{3}\sqrt{x^2-5}+\frac{2}{3}\sqrt{x^2-5}-3\sqrt{x^2-5}=0$

$\Leftrightarrow -\frac{5}{3}\sqrt{x^2-5}=0$

$\Leftrightarrow \sqrt{x^2-5}=0$

$\Leftrightarrow x=\pm \sqrt{5}$

Nguyễn Việt Anh
Xem chi tiết
Phong
18 tháng 7 2023 lúc 10:08

\(\sqrt{7-\sqrt{24}}-\dfrac{\sqrt{50}-5}{\sqrt{10}-\sqrt{5}}+\sqrt{\left(11+\sqrt{120}\right)\left(11+2\sqrt{30}\right)^2}\)

\(=\sqrt{7-2\sqrt{6}}-\dfrac{5\left(\sqrt{2}-1\right)}{\sqrt{5}\left(\sqrt{2}-1\right)}+\left|11+2\sqrt{30}\right|\sqrt{11-2\sqrt{30}}\)

\(=\sqrt{1^2-2\sqrt{6}\cdot1+\left(\sqrt{6}\right)^2}-\dfrac{\sqrt{5}\cdot\sqrt{5}}{\sqrt{5}}+\left(11+2\sqrt{30}\right)\sqrt{\left(\sqrt{6}\right)^2-2\sqrt{5}\cdot\sqrt{6}+\left(\sqrt{5}\right)^2}\)

\(=\sqrt{\left(1-\sqrt{6}\right)^2}-\sqrt{5}+\left(11+2\sqrt{30}\right)\sqrt{\left(\sqrt{6}-\sqrt{5}\right)^2}\)

\(=\left|1-\sqrt{6}\right|-\sqrt{5}+\left(11+2\sqrt{30}\right)\left|\sqrt{6}-\sqrt{5}\right|\)

\(=-1+6-\sqrt{5}+\left(\sqrt{6}+\sqrt{5}\right)^2\left(\sqrt{6}-\sqrt{5}\right)\)

\(=\sqrt{6}-1-\sqrt{5}+\left[\left(\sqrt{6}\right)^2-\left(\sqrt{5}\right)^2\right]\left(\sqrt{6}+\sqrt{5}\right)\)

\(=\sqrt{6}-1-\sqrt{5}+\left(6-5\right)\left(\sqrt{6}+\sqrt{5}\right)\)

\(=\sqrt{6}-1-\sqrt{5}+\sqrt{6}+\sqrt{5}\)

\(=2\sqrt{6}-1\)

Đặng Phương Linh
18 tháng 7 2023 lúc 10:12

\(=\sqrt{6+1-2\sqrt{6}}-\dfrac{\sqrt{5}\left(\sqrt{10}-\sqrt{5}\right)}{\sqrt{10}-\sqrt{5}}+\sqrt{\left(11-\sqrt{120}\right)\left(11+\sqrt{120}\right)^2}\\ =\sqrt{\left(\sqrt{6}-\sqrt{1}\right)^2}-\sqrt{5}+\sqrt{\left(11^2-120\right)\left(11+2\sqrt{30}\right)}\\ =\sqrt{6}-\sqrt{1}-\sqrt{5}+\sqrt{1\left(6+5+2\sqrt{6\cdot5}\right)}\\ =\sqrt{6}-\sqrt{1}-\sqrt{5}+\sqrt{\left(\sqrt{6}+\sqrt{5}\right)^2}\\ =\sqrt{6}-\sqrt{1}-\sqrt{5}+\sqrt{6}+\sqrt{5}=2\sqrt{6}-\sqrt{1}\)

 

 

 

Sophie Nguyen
Xem chi tiết
Hà Nam Phan Đình
10 tháng 7 2017 lúc 21:25

bạn nên tự nghiên cứu rồi giải đi chứ bạn đưa 1 loạt thế thì ai rảnh mà giải, với lại cứ bài gì không biết chưa chịu suy nghĩ đã hỏi rồi thì tiến bộ sao được, đúng không

Hùng Chu
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 8 2021 lúc 23:02

a: Ta có: \(\dfrac{2}{\sqrt{3}+1}+\dfrac{2}{2-\sqrt{3}}\)

\(=\sqrt{3}-1+2+\sqrt{3}\)

\(=2\sqrt{3}+1\)

b: Ta có: \(\dfrac{4}{\sqrt{5}+2}+\dfrac{2}{3+\sqrt{5}}\)

\(=4\sqrt{5}-8+\dfrac{3}{2}-\dfrac{\sqrt{5}}{2}\)

\(=-\dfrac{13}{2}+\dfrac{7}{2}\sqrt{5}\)

Huy Võ
Xem chi tiết
Yeutoanhoc
25 tháng 6 2021 lúc 15:40

`(sqrtx+2)/(sqrtx-3)-(sqrtx+1)/(sqrtx-2)-(3(sqrtx-1))/(x-5sqrtx+6)`

đk:`x>=0,x ne 4,x ne 9`

`=((sqrtx+2)^2-(sqrtx+1)(sqrtx+3)-3(sqrtx-1))/(x-5sqrtx+6)`

`=(x+4sqrtx+4-x-4sqrtx-3-3sqrtx+3)/(x-5sqrtx+6)`

`=(4-3sqrtx)/(x-5sqrtx+6)`

Nguyễn Lê Phước Thịnh
25 tháng 6 2021 lúc 19:09

Ta có: \(\dfrac{\sqrt{x}+2}{\sqrt{x}-3}-\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{3\left(\sqrt{x}-1\right)}{x-5\sqrt{x}+6}\)

\(=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{3\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{x-4-x+3\sqrt{x}-\sqrt{x}+3-3\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{-\sqrt{x}+2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{1}{3-\sqrt{x}}\)